福田のおもしろ数学573〜4次方程式の解と係数の関係 - 質問解決D.B.(データベース)

福田のおもしろ数学573〜4次方程式の解と係数の関係

問題文全文(内容文):

$a,b,c,d$は実数であり$4$次方程式

$x^4+ax^3+bx^2+cx+d=0$

のすべての解が正の実数であるとき

$(b-a-c)^2 \geqq kd$

が常に成り立つ最大の$k$を求めよ。

また等号が成り立つのはどんなときか?
     
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b,c,d$は実数であり$4$次方程式

$x^4+ax^3+bx^2+cx+d=0$

のすべての解が正の実数であるとき

$(b-a-c)^2 \geqq kd$

が常に成り立つ最大の$k$を求めよ。

また等号が成り立つのはどんなときか?
     
投稿日:2025.07.28

<関連動画>

福田の数学〜慶應義塾大学2022年看護医療学部第1問(5)〜解と係数の関係と式の値の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(5)iを虚数単位とし、$\alpha=\frac{1-\sqrt3i}{4}$とする。このとき、
$a,b$を実数とする2次方程式$x^2+ax+b=0$の解の1つが$\alpha$であるならば、
$a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }$である。
また、$f(x)=4x^4-3x^3+2x^2$とするとき、$f(\alpha)$の値は$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

高校入試なのに4次方程式!!山手学院

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2(x+2)^2-11x^2-22x+24=0$

山手学院高等学校
この動画を見る 

【高校数学】数Ⅲ-17 円と分点③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
点$z$が単位円の醜状を動くとき,
次のように表される点$w$はどのような図形をえがくか.

①$w=i(2z+1)$

②$w=(1+i)(z-1)$
この動画を見る 

福田の数学〜一橋大学2024年文系第3問〜多項式の商と余り

アイキャッチ画像
単元: #数Ⅱ#剰余の定理・因数定理・組み立て除法と高次方程式#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)$は$x$に関する4次方程式で4次の係数は1である。$f(x)$は$(x+1)^2$で割ると1余り、$(x-1)^2$で割ると2余る。$f(x)$を求めよ。
この動画を見る 

九州大 三次方程式と無理数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos2 0^{ \circ }+i \sin20^{ \circ }$
$\alpha=z+\bar{ z }$

(1)
$\alpha$を解に持つ整数、係数の3次方程式を求めよ

(2)
(1)で求めた方程式は相異なる3つの実数解をもち、それらはすべて無理数となることを示せ

(3)
$\alpha$を解にもつ有理数係数の2次方程式はないことを示せ

出典:2000年九州大学 過去問
この動画を見る 
PAGE TOP