問題文全文(内容文):
nは自然数
$4^{7n-3}+5^{2n+3}$
は必ずある素数をもつ
ある素数を求めよ
$4^{n+1}+5^{2n-1}$
は21の倍数であることを証明しなさい
nは自然数
$4^{7n-3}+5^{2n+3}$
は必ずある素数をもつ
ある素数を求めよ
$4^{n+1}+5^{2n-1}$
は21の倍数であることを証明しなさい
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
nは自然数
$4^{7n-3}+5^{2n+3}$
は必ずある素数をもつ
ある素数を求めよ
$4^{n+1}+5^{2n-1}$
は21の倍数であることを証明しなさい
nは自然数
$4^{7n-3}+5^{2n+3}$
は必ずある素数をもつ
ある素数を求めよ
$4^{n+1}+5^{2n-1}$
は21の倍数であることを証明しなさい
投稿日:2023.12.04