早稲田(社)整数 - 質問解決D.B.(データベース)

早稲田(社)整数

問題文全文(内容文):
$k\geqq 3$を自然数とする.
$2021_{(k)}$を
(1)$k-1$で割り切れる$k$の値を求めよ.
(2)$k+1$で割った余りを$k$で表せ.
(3)$k+2$で割ったら余りが$1$である$k$の値を求めよ.

2021早稲田(社)
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k\geqq 3$を自然数とする.
$2021_{(k)}$を
(1)$k-1$で割り切れる$k$の値を求めよ.
(2)$k+1$で割った余りを$k$で表せ.
(3)$k+2$で割ったら余りが$1$である$k$の値を求めよ.

2021早稲田(社)
投稿日:2021.04.09

<関連動画>

開成高校 整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
開成高校過去問題
A,B(A<B)は自然数で最大公約数が$g(\neq1)$で最小公倍数がl
$A^2+B^2+g^2+l^2 = 1300$を満たすA,Bを求めよ
この動画を見る 

福田の数学〜中央大学2021年理工学部第3問〜剰余類による分類

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り

(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.

(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.

2021中央大理工学部過去問
この動画を見る 

ラ・サール高校の整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,c,dは0または正の整数。
\begin{eqnarray}
\left\{
\begin{array}{l}
ad + bc = 2 \\
a + b + c + d = 4
\end{array}
\right.
\end{eqnarray}
を満たす(a,b,c,d)の組はいくつか?

ラ・サール学園
この動画を見る 

福田の数学〜中央大学2022年経済学部第3問〜下一桁が一致する整数と下二桁が一致する整数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の整数xについて、以下の設問に答えよ。
なお、ここでxの下一桁とはxを10で割った余りであり、
xの下二桁とはxを100で割った余りであるとする。
(1)$10 \leqq x \leqq 40$の範囲で、xn下一桁と$x^2$の下一桁が一致するようなxの個数を求めよ。
(2)$10 \leqq x \leqq 99$の範囲で、$x^2$の下一桁と$x^4$の下一桁が一致するxをすべて足した数を
Yとする。整数Yの下一桁を求めよ。
(3)$10 \leqq x \leqq 99$の範囲で、$x^2$の下二桁がxと等しいものをすべて求めよ。
この動画を見る 

群馬大(医)整数問題 完全数の約数の総和 約数の逆数の総和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$

(1)
$\displaystyle \sum_{i=1}^n a_i$

(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$

出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
この動画を見る 
PAGE TOP