整数問題やや難 - 質問解決D.B.(データベース)

整数問題やや難

問題文全文(内容文):
$ m,nを自然数とする.2^n+17=m^4,これを解け.$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ m,nを自然数とする.2^n+17=m^4,これを解け.$
投稿日:2022.07.05

<関連動画>

【数A】整数の性質:関西学院大学 背理法の利用

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
pを整数とする。
方程式x²+4x-5p+2=0を満足する整数xは存在しないことを証明せよ。
この動画を見る 

【数A】整数の性質:3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #サクシード#サクシード数学Ⅰ・A#その他(中高教材)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。
この動画を見る 

整数問題!これ2通りで解けますか?【札幌医科大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#札幌医科大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$n$に対して

$N=(n+2)^3-n(n+1)(n+2)$

が36の倍数になるような$n$をすべて求めよ。
この動画を見る 

東京女子医科大 整数問題

アイキャッチ画像
単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{n^2}{m}+\dfrac{m}{n}=8
をみたす自然数(m,n)をすべて求めよ.$
この動画を見る 

自作問題・良問(自画自賛)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nは自然数
$4^{7n-3}+5^{2n+3}$
は必ずある素数をもつ
ある素数を求めよ

$4^{n+1}+5^{2n-1}$
は21の倍数であることを証明しなさい
この動画を見る 
PAGE TOP