福田のわかった数学〜高校2年生049〜領域(4)命題と領域 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生049〜領域(4)命題と領域

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(4) 領域と命題\\
次の条件(\textrm{A}),\ (\textrm{B})は同値であることを示せ。\\
(\textrm{A})\ |x+y| \leqq 1\ かつ\ |x-y| \leqq 1\\
(\textrm{B})\ |x|+|y| \leqq 1       
\end{eqnarray}
単元: #数Ⅰ#数Ⅱ#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(4) 領域と命題\\
次の条件(\textrm{A}),\ (\textrm{B})は同値であることを示せ。\\
(\textrm{A})\ |x+y| \leqq 1\ かつ\ |x-y| \leqq 1\\
(\textrm{B})\ |x|+|y| \leqq 1       
\end{eqnarray}
投稿日:2021.08.23

<関連動画>

【中学数学】2次関数の基礎を丁寧に~これは知らないとヤバい~ 4-1【中3数学】

アイキャッチ画像
単元: #数Ⅰ#2次関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第2問〜平面ベクトルの直交と絶対値の最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
四面体OABCは
$OA=OB=2,\ \ \ OC=3,\ \ \ AB=1,\ \ \ BC=4$
を満たすとする。また、三角形ABCの重心をGとするとき、$OG=\sqrt2$である。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }=\frac{\boxed{ア}}{\boxed{イ}},$
$\ \ \ \overrightarrow{ OA }・\overrightarrow{ OC}=\frac{\boxed{ウエ}}{\boxed{オ}}$
(2)$\ \overrightarrow{ OG }$と$\overrightarrow{ OA }+k\overrightarrow{ OB }$が垂直であるのは$k=\boxed{カキ}$のときである。
(3)$t$を実数とする。
$|t\overrightarrow{ OA }-2t\overrightarrow{ OB }+\overrightarrow{ OC }|$
の最小値は$\frac{\sqrt{\boxed{クケコ}}}{\boxed{サ}}$であり、
そのときのtの値は$\frac{\boxed{シス}}{\boxed{セ}}$である。

2022青山学院大学理工学部過去問
この動画を見る 

東京電機大 最大値・最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yを実数とする.
$x^2+2y^2+4y=0$を満たすとき,$2x-y$の最大値・最小値を求めよ.

東京電機大過去問
この動画を見る 

計算が面白い問題 大阪教育大附属池田

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
18のすべての正の約数の正の平方根の和は$(1+\sqrt 2)x$という式で表される。
x=?
大阪教育大学附属高等学校平野校舎
この動画を見る 

自宅で勉強してて分からない問題に当たった時の解決法 #shorts #勉強法 #勉強

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
自宅で勉強してて分からない問題に当たった時の解決法に関して解説していきます.
この動画を見る 
PAGE TOP