東工大 漸化式 ひねった問題 - 質問解決D.B.(データベース)

東工大 漸化式 ひねった問題

問題文全文(内容文):
$C_{n+1}=8C_n-7$
数列$C_1,C_2,C_3,…$の中に素数の項が1つだけあるような$C_1$を2つ求めよ
$(C_1$自然数$)$

出典:2009年東京工業大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C_{n+1}=8C_n-7$
数列$C_1,C_2,C_3,…$の中に素数の項が1つだけあるような$C_1$を2つ求めよ
$(C_1$自然数$)$

出典:2009年東京工業大学 過去問
投稿日:2020.02.05

<関連動画>

慶應義塾大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}=n3^n_{100}C_{n}$
$b_{n}=n^22^n_{100}C_{n}$
$(n=1,2,3…100)$

(1)
$a_{n}$が最大となる$n$

(2)
$b_{n}$が最大となる$n$

出典:慶應義塾 過去問
この動画を見る 

【数B】【数列】漸化式1 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列
$\{a_n\}$ の一般項を求めよ。
(1) $a_1 = 1$, $a_{n+1} = \frac{a_n}{a_n + 1}$
(2)$a_1 = \frac{1}{2}$, $a_{n+1} = \frac{a_n}{2a_n + 3}$
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第4問〜確率漸化式と誤った答案に対する指摘

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の問題
問題
表面と裏面が出る確率がそれぞれであるコインを投げる試行を繰り返し、同
じ面が3回連続して出た時点で試行を終了する。n回投げ終えた段階で試行が
終了する確率 $p_n$を求めよ。
に対する次の答案Aについて以下の問いに答えよ。
(1) もし答案Aに誤りがあれば誤りを指摘し、その理由を述べよ。ただし、すでに
指摘してある誤った結論から論理的に導き出した結論を誤りとして指摘する必要
はない。誤りがないときは「誤りなし」と答えよ。
(2) 答案Aで導かれたp_nと正解の$p_n$とで値が異なるとき、値が異なる最小のnを
求め、そのnに対する正解のpnの値を答えよ。そのようなnがないときは
「すべて一致する」と答えよ。

答案A
自然数nに対して、コインをn回投げ終えた段階で、その後最短で試行が終了するために
必要な回数がk回($k \geqq 0$)である確率を$p_n(k)$とする。このとき、
kは0,1,2のいずれかであるから、確率の総和は
$p_n(0)+p_n(1)+p_n(2)=1$
である。また、$p_n(0)=p_n,p_{n+1}(0)=\frac{1}{2}p_n(1),p_{n+2}(0)=\frac{1}{4}p_n(2)$であるから漸化式
$p_n+2p_{n+1}+4p_{n+2}=1 (n \geqq 1)$
を得る。ここで$\frac{1}{7}+\frac{2}{7}+\frac{4}{7}=1$なので、$q_n=2^n(p_n-\frac{1}{7})$とすれば
$q_n+q_{n+1}+q_{n+2}=0$
である。よって$n \geqq 4$に対して
$q_n=-q_{n-1}-q_{n-2}=(q_{n-2}+q_{n-3})-q_{n-2}=q_{n-3}$
が成立する。以上より、
$Q(x)=
\left\{
\begin{array}{1}q_1 (nを3で割った時の余りが1のとき)\\
q_2 (nを3で割った時の余りが2のとき)\\
q_3      (nが3で割り切れるとき)\\
\end{array}
\right.$
とすれば求める確率は
$p_n=\frac{q_n}{2^n}+\frac{1}{7}=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)$
である。また最初の2項は定義より$p_1=p_2=0$であり$p_n$の漸化式で$n=1$とすれば
$p_1+2p_2+4p_3=1$ であるから$p_3=\frac{1}{4}$である。さらに
$q_1=-\frac{2}{7}, q_2=-\frac{4}{7}, q_3=\frac{6}{7}$
である。したがって
$p_1=p_2=0, p_3=\frac{1}{4}, p_n=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)$
となる。

2022浜松医科大学医学部過去問
この動画を見る 

【数B】特殊な数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の数列の一般項を求めなさい。
$a_1=1$
$a_2=2+3+2$
$a_3=3+4+5+4+3$
$a_4=4+5+6+7+6+5+4$
この動画を見る 

福田のおもしろ数学284〜(1+1/n)^nが増加数列である証明

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数列 $ \large{ a }\scriptsize{ n } = \left(1+\frac{1}{n} \right)^n $ は増加することを証明せよ。
この動画を見る 
PAGE TOP