【高校数学】 数Ⅱ-20 不等式の証明② - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-20 不等式の証明②

問題文全文(内容文):
◎$a \gt 0 , b \gt 0 $のとき、$\sqrt{ 4a+9b } \gt 2\sqrt{ a }+3\sqrt{ b }$を証明しよう。
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0 , b \gt 0 $のとき、$\sqrt{ 4a+9b } \gt 2\sqrt{ a }+3\sqrt{ b }$を証明しよう。
投稿日:2015.05.04

<関連動画>

雑問

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 25^{63}\times 63^{25}$の下3桁を求めよ.
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第3問〜不等式の証明と正12角形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$e$を自然対数の底とする。このとき、すべての自然数$n$について
$e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!}   (x \geqq 0)$
を証明せよ。
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に
外接するとは、正12角形のすべての辺が1つの円に接することである。

(3)(1)と(2)を用いて、不等式
$\pi - e \lt \frac{3}{5}$
を証明せよ。ただし、$\sqrt3 \gt 1.73$は証明なしに用いてよい。 

2022浜松医科大学医学部過去問
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^{ab}+x^{a+b}+1$,$g(x)=x^2+x+1$
$a,b$は自然数とする.
$f(x)$が$g(x)$で割り切れるための$a,b$の条件を求めよ.
この動画を見る 

福田のおもしろ数学482〜漸化式で定まる数列に関する不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_1=1,a_2=\dfrac{1}{2},$

$a_{n+2}=a_n+\dfrac{1}{2}a_{n+1}+\dfrac{1}{4a_na_{n+1}}$のとき、

$\dfrac{1}{a_1a_3}+\dfrac{1}{a_2a_4}+\dfrac{1}{a_3a_5}+\cdots +\dfrac{1}{a_{2025}a_{2027}}\lt 4$

であることを証明せよ。
    
この動画を見る 

福田のわかった数学〜高校2年生第6回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a,b,c$を正の数とする。
(1)$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$を示せ。
(2)$ab+bc+ca=k$(定数)のとき、$abc$の最大値とその時の$a,b,c$を求めよ。
この動画を見る 
PAGE TOP