x二乗をかけろ - 質問解決D.B.(データベース)

x二乗をかけろ

問題文全文(内容文):
$\frac{2x-4}{x} < 1$
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2x-4}{x} < 1$
投稿日:2023.04.04

<関連動画>

【高校数学】  数Ⅰ-72  2次関数と共有点⑤

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$2x^2-5x+a=0$の1つの解が0と1の間にあり、ほかの解が2と3の間にあるように、定数aの値の範囲を定めよう。
この動画を見る 

福田のおもしろ数学173〜多重のルートで示される数

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#鹿児島県公立高校入試
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{...}}}}$ を求めなさい。
この動画を見る 

【数Ⅰ】中高一貫校問題集3(論理・確率編)29:集合と命題:命題と証明:逆裏対偶の真偽の見分け方

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
命題[xy>0 ⇒ x>0 かつy>0]の逆、裏、対偶を述べ、さらにそれぞれの真偽を考えよ【集合と命題】【逆 裏 対偶】
この動画を見る 

数と式の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.次の式の分母を有理化せよ。
$\displaystyle \frac{1}{1+\sqrt{ 2 }+\sqrt{ 3 }}$

2.次の問いに答えよ。
$x=\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }},\ y=\displaystyle \frac{\sqrt{ 5 }-\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}$のとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$

3.次の問いに答えよ。
$x+\displaystyle \frac{1}{x}=3$のとき、次の式の値を求めよ。
(1)$x^2+\displaystyle \frac{1}{x^2}$
(2)$x-\displaystyle \frac{1}{x}$
(3)$x-^3+\displaystyle \frac{1}{x^3}$
(4)$x^4+\displaystyle \frac{1}{x^4}$
この動画を見る 

必要条件と十分条件②【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
全体集合$U$について、その部分集合を$A,B,C$とする。
ただし、$A,B,C$はいずれも空集合ではない。
集合$A,B,C$が次の式を満たすとき、次の問いに答えよ。
$A \cap B \neq \varnothing,\ B \cap C=\varnothing,\ \overline{ A }\cap C=\varnothing$
(1)$x \in \overline{ C }$であることは、$x \in B$であるための[ア]
(2)$x \in C$であることは、$x \in A$であるための[イ]
(3)$x \in A \cap \overline{ C }$であることは、$x \in A \cap B$であるための[ウ]

⓪必要十分条件
①必要条件であるが、十分条件でない
②十分条件であるが、必要条件でない
③必要条件でも十分条件でもない



実数$x$に対する条件$p,q,r$を次のように定める。
$p:x$は無理数
$q:x+\sqrt{ 28 }$は有理数
$r:\sqrt{ 28 }x$は有理数
次の[ア]、[イ]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返し選んでもよい。
この動画を見る 
PAGE TOP