福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積 - 質問解決D.B.(データベース)

福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
投稿日:2023.12.26

<関連動画>

【高校数学】ベクトルにおける点の存在範囲のコツ【数学のコツ】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルにおける点の存在範囲のコツを解説していきます.
この動画を見る 

福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。
また、線分BNと線分CMの交点をPとする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。

2022大阪大学文系過去問
この動画を見る 

【数B】ベクトル:2021年高3第1回数台全国模試 (文系)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、$OA=1、OB=2、\angle AOB=\theta(0\lt\theta\lt\pi)$であるとする。
$\angle AOB$の二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは$ (a・p)^2-2(b・p)+4=0$ を満たすと する。
ただし、$a=OA、b=OB、p=OP$とする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,$\theta$で表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、$OH・p=b・p$であることを示せ。
この動画を見る 

【数C】ベクトルが「平行」であるときの典型解法をおさえよう!

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題615
vec(a)=(1,x),vec(b)=(x,4)が平行であるような実数xの値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。
また、x座標が正の点Cを、$\overrightarrow{ OC }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$に垂直で、
$|\overrightarrow{ OC }|=8\sqrt3$となるように定める。
(1)$\triangle OAB$の面積は$\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}$である。
(2)点Cの座標は$(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })$である。
(3)四面体OABCの体積は$\boxed{\ \ キク\ \ }$である。
(4)平面ABCの方程式は$\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0$である。
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は
$(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})$
である。

2022慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP