問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(24) 重要な変形(2)\\
\triangle ABCにおいて\\
\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\\
を証明せよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{II} 三角関数(24) 重要な変形(2)\\
\triangle ABCにおいて\\
\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\\
を証明せよ。
\end{eqnarray}
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(24) 重要な変形(2)\\
\triangle ABCにおいて\\
\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\\
を証明せよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{II} 三角関数(24) 重要な変形(2)\\
\triangle ABCにおいて\\
\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\\
を証明せよ。
\end{eqnarray}
投稿日:2021.12.09