割った余り 愛知淑徳 - 質問解決D.B.(データベース)

割った余り 愛知淑徳

問題文全文(内容文):
自然数$m,n$が
$3(m+7)=5(n+11)$を満たすとき
$m$を5で割った余りを求めよ

愛知淑徳高等学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数$m,n$が
$3(m+7)=5(n+11)$を満たすとき
$m$を5で割った余りを求めよ

愛知淑徳高等学校
投稿日:2023.05.11

<関連動画>

例の問題 2023の2023乗を19で割ったあまり

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2023^{2023}$を19で割ったあまりを求めよ
この動画を見る 

合同式でさらっと 良問再投稿 弘前大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$5^{2n-1}+7^{2n-1}+23^{2n-1}$
35の倍数を示せ

(2)
$3^{3n-2}+5^{3n-1}$
7の倍数であることを示せ

出典:弘前大学 過去問
この動画を見る 

整数の性質が苦手な人のための動画【互いに素・a=ga'・ab=gl】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
整数の性質まとめ動画です
-----------------
1⃣
和が168で最大公約数が14、となる自然数のa、bの組をすべて求めよ。

2⃣
積が300で最小公倍数が60となる自然数の、bの組をすべて求めよ。

3⃣
積が288で最下公約数が6となる自然教a、bの組をすべて求めよ。なお、$a \lt b$とする。
この動画を見る 

合同式の基本 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1\times 3\times 5\times 7\times・・・・・・\times 999$を$16$で割った余りを求めよ.
この動画を見る 

良問!!整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a=? b=? c=?
a,b,cは自然数でa<b<c
(a+b)(b+c)(c+a)=350
この動画を見る 
PAGE TOP