【数Ⅱ】微分法と積分法:偶関数・奇関数の性質の利用!知っているか知らないかで、差がつきますよ!! - 質問解決D.B.(データベース)

【数Ⅱ】微分法と積分法:偶関数・奇関数の性質の利用!知っているか知らないかで、差がつきますよ!!

問題文全文(内容文):
偶関数・奇関数の性質を利用すると、定積分の計算が簡単になる!?なぜそうなるか、グラフのイメージと共に解説します!
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
偶関数・奇関数の性質を利用すると、定積分の計算が簡単になる!?なぜそうなるか、グラフのイメージと共に解説します!
備考:※動画内の3次関数のグラフはy=x³のグラフではありません。あくまでイメージです。
投稿日:2020.08.18

<関連動画>

【積分】積分がなぜ面積を求められるのかについて解説しました!【数学III】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
積分の原理を解説します。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第2問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xの関数$f(x)$を$f(x)=x^3$とする。
(1)xの関数$g(x)$を$g(x)=x^3-2x^2-x+3$とする。曲線$y=f(x)$と$y=g(x)$は
3個の交点をもつ。それら交点を$\ x \ $座標が小さい順にA,B,Cとすると、
点$A,B,C$の$\ x\ $座標はそれぞれ$ \boxed{ア},\ \boxed{イ},\ \boxed{ウ}$ である。

曲線$y=g(x)$の接線の傾きが最小となるのは、
接点の$\ x\ $座標が$\frac{\boxed{エ}}{\boxed{オ}}$のときで、
その最小値は$-\frac{\boxed{カ}}{\boxed{\ \ キ\ \ }}$である。
また、点Bを通る$y=g(x)$の接線の傾きの最小値は$-\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$である。

(2)$x$ の関数$h(x)$が

$h(x)=-x^2+\frac{x}{6}\int_0^3h(t)dt+4$
を満たすとき、$h(x)=-x^2+\boxed{\ \ コ\ \ }\ x+4$である。
曲線$y=f(x)$と$y=h(x)$の交点の中点は$(\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }})$であり、

$y=f(x)$と$y=h(x)$で囲まれる図形の面積は
原点を通る直線$y=\boxed{\ \ コ\ \ }x$で2等分される。

2022明治大学全統過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第5問〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$dを実数の定数、$f(t)$を2次関数として、次の関数F(x)を考える。
$F(x)=\int_d^xf(t)dt$
(1)$F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }$である。
(2)$F(x)$が$x=1$で極大値5、$x=2$で極小値4をとるとき、
$f(t)$およびdを求めなさい。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

東工大 積分 放物線と直線 面積最小値 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#不定積分・定積分#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=-2x^2+x+1$上の1点における接線と$y=x^2$とによって囲まれる部分の面積の最小値を求めよ。

出典:1967年 東京工業大学 過去問
この動画を見る 

大阪大 区分求積法 ヨビノリ病欠 代講ヤス

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \sum_{k=1}^n \displaystyle \frac{[\sqrt{ 2n^2-k^2 }]}{n^2}$

$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2000年大阪大学 過去問
この動画を見る 
PAGE TOP