福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(1) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(1)

問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$O(0),A(\alpha),B(\beta)$が
$\alpha^2-2\alpha\beta+4\beta^2=0$を満たすとき、
$\triangle OAB$はどのような三角形か。

${\Large\boxed{2}}$ $\alpha=2i,$ $\beta=-\sqrt3+7i,$ $\gamma=\sqrt3+4i$ を表す点を
それぞれ$A,B,C$とするとき、$\triangle ABC$の形状を述べよ。
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$O(0),A(\alpha),B(\beta)$が
$\alpha^2-2\alpha\beta+4\beta^2=0$を満たすとき、
$\triangle OAB$はどのような三角形か。

${\Large\boxed{2}}$ $\alpha=2i,$ $\beta=-\sqrt3+7i,$ $\gamma=\sqrt3+4i$ を表す点を
それぞれ$A,B,C$とするとき、$\triangle ABC$の形状を述べよ。
投稿日:2018.05.30

<関連動画>

横浜市大 複素数 cos36°,cos108° 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
(1)$x^2-x-1=0$解け
(2)複素数Z$(\neq 0)$,$\quad x=Z+\frac{1}{Z}$として、このxを(1)の方程式に代入して、すべての解を求めよ。
(3)$cos\frac{\pi}{5}$と$cos\frac{3\pi}{5}$の値
この動画を見る 

産業医科大 三角比の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=?$

$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=?$

これらを求めよ。

産業医科大過去問
この動画を見る 

【数C】【複素数平面】複素数と図形1 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の各辺の中点が$\alpha=-1+i,\beta=1+2i,\gamma=2$であるとき、この三角形の3つの頂点を表す複素数を求めよ。
この動画を見る 

福田のおもしろ数学528〜平面幾何の証明

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

平行四辺形$ABCD$と内部の点$O$において

$\alpha+\beta=180°$のとき

$\angle OBC=\angle ODC$

を証明せよ。

図は動画内参照
この動画を見る 

福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。

2023筑波大学理系過去問
この動画を見る 
PAGE TOP