福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(1) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(1)

問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$O(0),A(\alpha),B(\beta)$が
$\alpha^2-2\alpha\beta+4\beta^2=0$を満たすとき、
$\triangle OAB$はどのような三角形か。

${\Large\boxed{2}}$ $\alpha=2i,$ $\beta=-\sqrt3+7i,$ $\gamma=\sqrt3+4i$ を表す点を
それぞれ$A,B,C$とするとき、$\triangle ABC$の形状を述べよ。
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$O(0),A(\alpha),B(\beta)$が
$\alpha^2-2\alpha\beta+4\beta^2=0$を満たすとき、
$\triangle OAB$はどのような三角形か。

${\Large\boxed{2}}$ $\alpha=2i,$ $\beta=-\sqrt3+7i,$ $\gamma=\sqrt3+4i$ を表す点を
それぞれ$A,B,C$とするとき、$\triangle ABC$の形状を述べよ。
投稿日:2018.05.30

<関連動画>

福田の数学〜東京理科大学2024創域理工学部第1問(1)〜複素数と三角形の外接円

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)a$を正の実数とする。$x$についての方程式
$(x^2+ax+2)(x^2-ax-1)=0・・・①$
が異なる2つの実数解と異なる2つの虚数解をもつのは
$\boxed{ア} \lt a \lt \boxed{イ}\sqrt{\boxed{ウ}}・・・②$
のときである。
以下では、$a$は不等式$②$を満たす最大の整数とし、$i$は虚数単位とする。このとき、複素数平面上において、方程式$①$の異なる2つの虚数解と$3+i$を頂点とする三角形の面積は$\boxed{エ}$であり、この三角形の外接円を複素数zの方程式で表すと
$|x-\boxed{オ}|=\sqrt{\boxed{カ}}$
である。
この動画を見る 

複素数平面の基本⑬3点が一直線上にあるとき、なす角が垂直のときを考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点が一直線上にある条件、2直線が垂直に交わるときの条件
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜|z|, arg zの範囲

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

${\Large\boxed{1}}$ 点$z$が、$|z+3-\sqrt3i|$$=\sqrt2|z$$+2-\sqrt3i|$ を満たしながら動く。
このとき、$|z|$の値の範囲と$z$の偏角$\theta$の範囲を求めよ。
ただし、$0 \leqq \theta \lt 2\pi$ とする。
この動画を見る 

【高校数学】 数B-50 座標空間における図形①

アイキャッチ画像
単元: #平面上のベクトル#複素数平面#ベクトルと平面図形、ベクトル方程式#図形への応用#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3点$A(8,-7,5),B(-2,3,-5),C(3,-2,-3)$に体して,
次の各点の座標を求めよう.

①線分$AB$を$3:2$に内分する点

②線分$AC$を$2:3$に外分する点

③線分$AB$の中点

④$\triangle ABC$の重心
この動画を見る 

【数C】【複素数平面】複素数と図形1 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の各辺の中点が$\alpha=-1+i,\beta=1+2i,\gamma=2$であるとき、この三角形の3つの頂点を表す複素数を求めよ。
この動画を見る 
PAGE TOP