【数Ⅰ】【図形と計量】面積応用7 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】面積応用7 ※問題文は概要欄

問題文全文(内容文):
半径$r$の円に内接する正$n$角形の面積、および外接する正$n$角形の面積を、それぞれ$r$と$n$を用いて求めよ。
チャプター:

0:00 オープニング
0:05 内接する正n角形
0:16 アプローチと解説
2:19 外接する正n角形、アプローチと解説
5:19 エンディング

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
半径$r$の円に内接する正$n$角形の面積、および外接する正$n$角形の面積を、それぞれ$r$と$n$を用いて求めよ。
投稿日:2025.02.09

<関連動画>

三重大 対数と二次関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha \gt 0$とする.
$f(x)=\log_3 \left(-\dfrac{1}{2}x^2+\dfrac{1}{2}\alpha x+9 \right)$

$f(x)$が整数となる$x$が$0\leqq x\leqq \alpha$の範囲でちょうど$6$個あるような$\alpha$の範囲を求めよ.

三重大過去問
この動画を見る 

米国選抜数学試験

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1990米国選抜数学試験
a,b,x,yは実数
$ax+by=3$
$ax^2+by^2=7$
$ax^3+by^3=16$
$ax^4+by^4=42$
$ax^5+by^5=?$
この動画を見る 

図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~
この動画を見る 

数学を数楽に

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$499^2+499+500=$
この動画を見る 

ごめんなさい

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
この動画を見る 
PAGE TOP