問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(4)\ 2次方程式2x^2+4x+1=0の解を\alpha,\ \beta(\alpha\lt \beta)とする。実数p,qに対して、\\
2次方程式x^2+px+q=0の解が\alpha^3,\ \beta^3であるならば、\hspace{93pt}\\
p=\boxed{\ \ オ\ \ },\ q=\boxed{\ \ カ\ \ }\ である。\hspace{179pt}
\end{eqnarray}
2022立教大学理学部過去問
\begin{eqnarray}
{\large\boxed{1}}(4)\ 2次方程式2x^2+4x+1=0の解を\alpha,\ \beta(\alpha\lt \beta)とする。実数p,qに対して、\\
2次方程式x^2+px+q=0の解が\alpha^3,\ \beta^3であるならば、\hspace{93pt}\\
p=\boxed{\ \ オ\ \ },\ q=\boxed{\ \ カ\ \ }\ である。\hspace{179pt}
\end{eqnarray}
2022立教大学理学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(4)\ 2次方程式2x^2+4x+1=0の解を\alpha,\ \beta(\alpha\lt \beta)とする。実数p,qに対して、\\
2次方程式x^2+px+q=0の解が\alpha^3,\ \beta^3であるならば、\hspace{93pt}\\
p=\boxed{\ \ オ\ \ },\ q=\boxed{\ \ カ\ \ }\ である。\hspace{179pt}
\end{eqnarray}
2022立教大学理学部過去問
\begin{eqnarray}
{\large\boxed{1}}(4)\ 2次方程式2x^2+4x+1=0の解を\alpha,\ \beta(\alpha\lt \beta)とする。実数p,qに対して、\\
2次方程式x^2+px+q=0の解が\alpha^3,\ \beta^3であるならば、\hspace{93pt}\\
p=\boxed{\ \ オ\ \ },\ q=\boxed{\ \ カ\ \ }\ である。\hspace{179pt}
\end{eqnarray}
2022立教大学理学部過去問
投稿日:2022.09.13