福田の数学〜慶應義塾大学2022年経済学部第3問〜データの分析と条件付き確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年経済学部第3問〜データの分析と条件付き確率

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xの関数が印刷されているカード25枚が1つの袋に入っている。\\
その内訳は、11枚に1-3x、9枚に1-2x、4枚に1-2x+2x^2、1枚に1-3x+5x^2である。\\
この袋からカードを1枚取り出し、印刷されている関数を記録してから袋に戻すことを\\
100回繰り返したところ、記録の内訳は1-3xが46回、1-2xが35回、1-2x+2x^2が15回、\\
1-3x+5x^2が4回であった。\\
(1)記録された関数の実数xにおける値をa_1,a_2,\ldots,a_{100}とおく。\\
a_1,a_2,\ldots,a_{100}の平均値は、xの値を定めるとそれに対応して値が定まるので、\\
xの関数である。この関数はx=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ のとき最小となり、その値は-\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}\ である。\\
(2)記録された関数のx=0からx=1までの定積分をb_1,b_2,\ldots,b_{100}とおく。\\
b_1,b_2,\ldots,b_{100}の平均値は-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\ であり、分散は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ である。\\
また、記録された関数のx=1における値をc_1,c_2,\ldots,c_{100}とおくとき、\\
100個のデータの組(b_1,c_1),(b_2,c_2),\ldots,(b_{100},c_{100})の共分散は\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}\ である。\\
(3)カードがすべて袋に入った状態から1枚取り出したとき、印刷されている\\
関数のx=1における値が負である条件の下で、その関数の0から1までの定積分\\
が負である条件つき確率は\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
単元: #数Ⅰ#数A#大学入試過去問(数学)#場合の数と確率#データの分析#データの分析#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xの関数が印刷されているカード25枚が1つの袋に入っている。\\
その内訳は、11枚に1-3x、9枚に1-2x、4枚に1-2x+2x^2、1枚に1-3x+5x^2である。\\
この袋からカードを1枚取り出し、印刷されている関数を記録してから袋に戻すことを\\
100回繰り返したところ、記録の内訳は1-3xが46回、1-2xが35回、1-2x+2x^2が15回、\\
1-3x+5x^2が4回であった。\\
(1)記録された関数の実数xにおける値をa_1,a_2,\ldots,a_{100}とおく。\\
a_1,a_2,\ldots,a_{100}の平均値は、xの値を定めるとそれに対応して値が定まるので、\\
xの関数である。この関数はx=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ のとき最小となり、その値は-\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}\ である。\\
(2)記録された関数のx=0からx=1までの定積分をb_1,b_2,\ldots,b_{100}とおく。\\
b_1,b_2,\ldots,b_{100}の平均値は-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\ であり、分散は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ である。\\
また、記録された関数のx=1における値をc_1,c_2,\ldots,c_{100}とおくとき、\\
100個のデータの組(b_1,c_1),(b_2,c_2),\ldots,(b_{100},c_{100})の共分散は\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}\ である。\\
(3)カードがすべて袋に入った状態から1枚取り出したとき、印刷されている\\
関数のx=1における値が負である条件の下で、その関数の0から1までの定積分\\
が負である条件つき確率は\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
投稿日:2022.06.22

<関連動画>

学習院大 三次方程式と複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04学習院大学過去問題
a実数
$f(x)=4x^3-4ax^2+(a^2+3)x+a^2+4a+7$
(1)任意のaについてf(m)=0が成り立つ実数m
(2)f(x)=0の3つの解を複素数平面上に図示したとき、それらが正三角形になるようなaの値
この動画を見る 

【高校数学あるある】平方根を含んだ計算問題!解けると気持ちいい! #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{1}{\sqrt2+1}+\dfrac{1}{\sqrt3+\sqrt2}+\dfrac{1}{\sqrt4+\sqrt3}$
$+……+\dfrac{1}{\sqrt10+\sqrt9}$

これを解け。

この動画を見る 

方程式 解と係数の関係

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+2x+4=0$の2つの解を$\alpha,\beta$とする.
$\alpha^{100}+\beta^{100}$の値を求めよ.

$x^2+x+1=0$の2つの解を$\alpha,\beta$とする.
$\alpha^5+\beta^5$の値を求めよ.
この動画を見る 

数弱私文の早大生バンカラジオにヨビノリたくみが「優しく」三角関数の基本を教えるよ。余弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師: 鈴木貫太郎
問題文全文(内容文):
三角関数の基本解説動画です
この動画を見る 

正六角形

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正六角形の面積=6のとき
青色部分の面積は?
この動画を見る 
PAGE TOP