福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。

$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。

(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。

$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$

と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$

を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。

$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。

$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\

$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$    ①$\alpha$    ②$\frac{\pi}{2}$

2021共通テスト数学過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。

$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。

(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。

$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$

と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$

を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。

$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。

$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\

$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$    ①$\alpha$    ②$\frac{\pi}{2}$

2021共通テスト数学過去問
投稿日:2022.01.07

<関連動画>

福田の数学〜東北大学2023年理系第2問〜三角方程式の解の個数とその極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 関数f(x)=$\sin3x$+$\sin x$について、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数$x$のうち、最小のものを求めよ。
(2)正の整数$m$に対して、f(x)=0を満たす正の実数$x$のうち、$m$以下のものの個数を$p(m)$とする。極限値$\displaystyle\lim_{m \to \infty}\frac{p(m)}{m}$ を求めよ。

2023東北大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(2)$2(\cos\theta-\sin\theta)^2=1$を満たす$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めると$\boxed{\ \ イ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

30度 45度 60度の直線の式  A 慶應義塾 2021

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#三角関数#三角関数とグラフ#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,B,Cの座標をaを用いて表せ
*図は動画内参照

2021慶應義塾高等学校
この動画を見る 

福田の数学〜立教大学2025経済学部第2問〜2点の位置関係と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$p,q$を正の実数とする。

原点を$O$とする座標平面上に

点$A(1,0)$、点$P\left(p,\dfrac{1}{p}\right)$,点$Q\left(q,\dfrac{2}{q}\right)$がある。

$\angle AOP=\alpha,\angle AOQ=\beta$とおき、

$P,Q$は$\alpha \lt \beta$を満たしながら動くものとする。

三角形$OPQ$の面積を$S$とし、

また、$T=\tan(\beta-\alpha)$とおく。

(1)$\cos\alpha,\sin\alpha$をそれぞれ$p$を用いて表せ。

また、$\cos\beta,\sin\beta$をそれぞれ$q$を用いて表せ。

(2)$T$を$p,q$を用いて表せ。

(3)$S$を$p,q$を用いて表せ。

(4)$t=pq$とおく。$\dfrac{S}{T}$を$t$を用いて表せ。

(5)$\dfrac{S}{T}$の最小値を求めよ。

$2025$年立教大学経済学部過去問題
この動画を見る 

福田のおもしろ数学129〜三角関数の最大問題

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\frac{1+\sin\theta}{2+\cos\theta}$($\theta$は実数)の最大値を求めよ。
この動画を見る 
PAGE TOP