あれですよ、あれ - 質問解決D.B.(データベース)

あれですよ、あれ

問題文全文(内容文):
これを解け.
$\dfrac{3}{1!+2!+3!}+\dfrac{4}{2!+3!+4!}+\dfrac{5}{3!+4!+5!}+・・・・・・+\dfrac{2022}{2020!+2021!+2022!}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{3}{1!+2!+3!}+\dfrac{4}{2!+3!+4!}+\dfrac{5}{3!+4!+5!}+・・・・・・+\dfrac{2022}{2020!+2021!+2022!}$
投稿日:2022.04.24

<関連動画>

岡山県立大 バーゼル問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
証明せよ

$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{k^2} \leqq 2-\displaystyle \frac{1}{n}$

出典:岡山県立大学 過去問
この動画を見る 

【高校数学】等比中項の証明~理解して暗記しよう~ 3-6【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【数学B】等比中項の証明についての説明動画です
この動画を見る 

広島大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列${a_n}$
$a_{1}=\displaystyle \frac{1}{3},a_{n+1}=2a_{n}(1-a_{n})$

(1)
すべての自然数$n$で$a_{n} \lt \displaystyle \frac{1}{2}$を示せ

(2)
一般項を求めよ。

出典:1996年広島大学 過去問
この動画を見る 

20和歌山県教員採用試験 数列、整数問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{15}{8},\displaystyle \frac{165}{11},\displaystyle \frac{315}{14},\displaystyle \frac{465}{17},・・・$の一般項$a_n$が自然数となるもののうち最大となるときの$n$を求めよ。

出典:2020年教育採用試験和歌山
この動画を見る 

福田の1.5倍速演習〜合格する重要問題043〜北海道大学2017年度文系第3問〜確率漸化式の定番問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
正四面体ABCDの頂点を移動する点Pがある。点Pは、1秒ごとに、
隣の3頂点のいずれかに等しい確率$\frac{a}{3}$で移るか、もとの頂点に確率1-aで
留まる。初め頂点Aにいた点Pが、n秒後に頂点Aにいる確率を$p_n$とする。
ただし、$0 \lt a \lt 1$とし、nは自然数とする。

(1)数列$\left\{p_n\right\}$の漸化式を求めよ。
(2)確率$p_n$を求めよ。

2017北海道大学文系過去問
この動画を見る 
PAGE TOP