福田の数学〜東京理科大学2024創域理工学部第2問〜放物線の接線と極限 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2024創域理工学部第2問〜放物線の接線と極限

問題文全文(内容文):
$m$を正の実数とし、関数$f(x)$を$f(x)=-mx^2+1$と定める。座標平面上の曲線$y=f(x)$を$C$とおき、負の実数$a$に対して点$\textrm{A}(a,f(a))$における曲線$C$の接線を$l_1$とおく。直線$l_1$と$y$軸との交点を$\textrm{P}$とし、点$\textrm{P}$を通り$l_1$に垂直な直線を$l_2$とおき、$l_2$と$x$軸の交点を$\textrm{Q}$とする。
(1) 点$\textrm{P}$の座標を$a$と$m$を用いて表せ。
(2) 点$\textrm{Q}$の座標を$a$と$m$を用いて表せ。

以下、直線$l_2$が曲線$C$の接線となるときを考える。
(3) $a$を$m$を用いて表せ。
(4) 線分$\textrm{AQ}$の長さは$m$を用いて表される。これを$L(m)$とおく。
(a) $\displaystyle \lim_{m \rightarrow \infty}L(m)$を求めよ。
(b) $\displaystyle \lim_{m \rightarrow 0}mL(m)$を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$m$を正の実数とし、関数$f(x)$を$f(x)=-mx^2+1$と定める。座標平面上の曲線$y=f(x)$を$C$とおき、負の実数$a$に対して点$\textrm{A}(a,f(a))$における曲線$C$の接線を$l_1$とおく。直線$l_1$と$y$軸との交点を$\textrm{P}$とし、点$\textrm{P}$を通り$l_1$に垂直な直線を$l_2$とおき、$l_2$と$x$軸の交点を$\textrm{Q}$とする。
(1) 点$\textrm{P}$の座標を$a$と$m$を用いて表せ。
(2) 点$\textrm{Q}$の座標を$a$と$m$を用いて表せ。

以下、直線$l_2$が曲線$C$の接線となるときを考える。
(3) $a$を$m$を用いて表せ。
(4) 線分$\textrm{AQ}$の長さは$m$を用いて表される。これを$L(m)$とおく。
(a) $\displaystyle \lim_{m \rightarrow \infty}L(m)$を求めよ。
(b) $\displaystyle \lim_{m \rightarrow 0}mL(m)$を求めよ。
投稿日:2024.10.07

<関連動画>

【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
無限級数
$1- (x+y) $$ + (x+y)^2 - (x+y)^3 $$ + \cdots \cdots + \{ -(x+y) \}^{n-1} $$ + \cdots \cdots$
が収束し、その和が $\displaystyle \frac{1}{1-x}$ であるとき、
$y$ を $x$ で表し、そのグラフをかけ。
この動画を見る 

大学入試問題#411「私学の医学科は3乗根の極限がお好き?」 藤田医科大学2022 #極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 8 } \displaystyle \frac{x^2-9x+8}{\sqrt[ 3 ]{ x }-2}$

出典:2022年藤田医科大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系020〜極限(20)関数の極限、無理関数の極限(5)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(5)

$\displaystyle\lim_{x \to \infty}(\sqrt{x^2+2x+3}-(ax+b))$
を求めよ。
この動画を見る 

でんがんとヨビノリを脇に添えてもっちゃんとバーゼル問題を解く!

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{1^2}+$$\frac{1}{2^2}+$$\frac{1}{3^2}・・・+$$\frac{1}{n^2}=$$\frac{\pi^2}{6}$
この動画を見る 

日本医科大学 バーゼル問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
日本医科大学過去問題
$abc=1$ $a>0,b>0,c>0$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqq \sqrt{a} + \sqrt{b} +\sqrt{c}$を示せ
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} - \sqrt{a} - \sqrt{b} -\sqrt{c}$
$n \to \infty \frac{3}{2} \leqq 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2} \leqq 2$
この動画を見る 
PAGE TOP