福田のわかった数学〜高校2年生032〜知って得する平行・垂直条件(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生032〜知って得する平行・垂直条件(1)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 知って得する平行・垂直条件(1)\\
2直線\\
ax-y-a+1=0 \ldots①\\
(a+2)x-ay+2a=0 \ldots②\\
が次の条件を満たすとき、定数aの値を求めよ。\\
\\
(1)平行である  (2)垂直である
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 知って得する平行・垂直条件(1)\\
2直線\\
ax-y-a+1=0 \ldots①\\
(a+2)x-ay+2a=0 \ldots②\\
が次の条件を満たすとき、定数aの値を求めよ。\\
\\
(1)平行である  (2)垂直である
\end{eqnarray}
投稿日:2021.06.19

<関連動画>

福田のわかった数学〜高校2年生052〜領域(7)領域と最大最小(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(7) 領域と最大最小(3)
$x^2+y^2 \leqq 10, y \geqq 0$ のとき、
$2x-y$
の最大値と最小値を求めよ。
この動画を見る 

福田の数学〜千葉大学2022年理系第3問〜折り返された放物線と直線の交点の個数と囲まれる面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)aを実数とする。$y=ax$のグラフと$y=x|x-2|$のグラフの交点の個数が
最大となる$a$の範囲を求めよ。
(2)$0 \leqq a \leqq 2$とする。$S(a)$を$y=ax$のグラフと$y=x|x-2|$のグラフで
囲まれる図形の面積とする。$S(a)$をaの式で表せ。
(3)(2)で求めた$S(a)$を最小にするaの値を求めよ。

2022千葉大学理系過去問
この動画を見る 

【高校数学】 数Ⅱ-53 点と直線③

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2点A(-3,4)、B(1,2)を結ぶ線分ABについて、次の点の座標を求めよう。

①2:1に内分する点C

②3:4に外分する点D

③中点E

④次の3点A(1,-3)、B(-2,5)、C(7,1)を頂点とする△ABCの重心の 座標を求めよう。
この動画を見る 

福田のわかった数学〜高校2年生015〜直線の方程式と内心

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
$y=-\displaystyle \frac{3}{4}x+9, y=\displaystyle \frac{4}{3}x+9, y=\displaystyle \frac{3}{4}x-5$
で囲まれた三角形の内心の座標を求めよ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(2)野菜Aには1個あたり栄養素$x_1$が8g、栄養素$x_2$が4g、栄養素$x_3$が2g
含まれ、野菜Bには1個あたり栄養素$x_1$が4g、栄養素$x_2$が6g、栄養素$x_3$
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素$x_1$
を42g以上、栄養素$x_2$を48g以上、栄養素$x_3$を30g以上含まれるように
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は

$(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })$

である。ただし、 $\boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }$とする。

2021上智大学文系過去問
この動画を見る 
PAGE TOP