福田のおもしろ数学053〜数学オリンピックの幾何の問題〜線分の長さを求める - 質問解決D.B.(データベース)

福田のおもしろ数学053〜数学オリンピックの幾何の問題〜線分の長さを求める

問題文全文(内容文):
DB = BC = 2 , AB = AC, 直線 AC と直線 DC は点 A, D で円 O に接している。
直線AB と円 O の交点のうち A でない方を E とし、直線 CE と円 O の交点のうち E でない方を F とする。
線分 EF の長さを求めよ。
※図は動画内参照

数学オリンピック過去問
単元: #数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#方べきの定理と2つの円の関係#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
DB = BC = 2 , AB = AC, 直線 AC と直線 DC は点 A, D で円 O に接している。
直線AB と円 O の交点のうち A でない方を E とし、直線 CE と円 O の交点のうち E でない方を F とする。
線分 EF の長さを求めよ。
※図は動画内参照

数学オリンピック過去問
投稿日:2024.02.16

<関連動画>

数学「大学入試良問集」【5−4 石の移動と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正三角形の頂点を反時計回りにA,B,Cと名付け、ある頂点に1つの石が置いてある。
次のゲームを行う。
袋の中に黒玉3個、白玉2個の計5個の球が入っている。
この袋の中を水に2個の球を取り出して元に戻す。
この1回の試行で、もし黒玉2個の場合は反時計回りに、白玉2個の場合は時計回りに隣の頂点に石を動かす。
ただし、白玉1個と黒玉1個の場合には動かさない。
このとき、以下の問いに答えよ。
(1)
1回の試行で、黒玉2個を取り出す確率と、白玉2個を取り出す確率を求めよ。

(2)
最初に石を置いた頂点をAとする。
4回の試行を続けた後、石が頂点Cにある確率を求めよ。
この動画を見る 

変な方程式(数3不要)

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x>0であり実数であるとき,これを解け.
10xx2=xx
この動画を見る 

球が出てきただけでビビるなよ。海城高校

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径6の球に内接する立方体の体積=?
*図は動画内参照
海城高等学校
この動画を見る 

WASEDAを並べよ 早稲田高校

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
WASEDAの6文字を一列に並べるとき、全ての母音が隣り合っている並べ方は何通り?
早稲田高等学校
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part1

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は    である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は    である。
(2)n回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率をpnとする。
pn+1pnを用いて表すとpn+1=    となり、これよりpnnを用いて表すとpn=    となる。
(3)n回目(n≧4)の操作を終えたとき、袋Aの中にn1個以上の玉が入っている確率は    であり、n2個以上の玉が入っている確率は    である。
この動画を見る 
PAGE TOP preload imagepreload image