【数Ⅱ】【複素数と方程式】剰余の定理と因数定理1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【複素数と方程式】剰余の定理と因数定理1 ※問題文は概要欄

問題文全文(内容文):
次の有理数の範囲で因数分解せよ。
(1)$4x^3+x+1$
(2)$2x^3-x^2+9$
(3)$3x^3+8x^2-1$

次の式を因数分解せよ。
(1)$x^4+5x^3+5x^2-5x-6$
(2)$x^4+4x^3-x^2-16x-12$

$P(x)=x^3+ax^2+bx^+c$とする。$P(x)$は$x^2-1$で割り切れ、また、$P(x)$を$2$で割ると余りが$3$である。このとき、定数$a,b,c$の値を求めよ。
チャプター:

0:00 オープニング
0:04 問題1の解説
9:34 問題2の解説
15:04 問題3の解説

単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の有理数の範囲で因数分解せよ。
(1)$4x^3+x+1$
(2)$2x^3-x^2+9$
(3)$3x^3+8x^2-1$

次の式を因数分解せよ。
(1)$x^4+5x^3+5x^2-5x-6$
(2)$x^4+4x^3-x^2-16x-12$

$P(x)=x^3+ax^2+bx^+c$とする。$P(x)$は$x^2-1$で割り切れ、また、$P(x)$を$2$で割ると余りが$3$である。このとき、定数$a,b,c$の値を求めよ。
投稿日:2025.02.18

<関連動画>

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=\cos^3x$ $(0 \leqq x \leqq \frac{\pi}{2})$,x軸およびy軸で囲まれる図形の面s系をS
とする。$0 \lt t \lt \frac{\pi}{2}$とし、C上の点Q$(t,\cos^3t)$と原点O,およびP$(t,o),R(0,\cos^3t)$
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)$f(t)$は最大値をただ一つのtでとることを示せ。そのときのtを$\alpha$とすると、
$f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha}$ であることを示せ。
(3)$\frac{f(\alpha)}{S} \lt \frac{9}{16}$ を示せ。

2022京都大学理系過去問
この動画を見る 

【複素数の基礎はこれだけ!】複素数の最低限の知識をまとめました!〔高校数学 数学〕

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
複素数についてまとめました。
この動画を見る 

3次方程式の解と係数の関係 あっという間に出す方法もあるよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2,\beta^2,\delta^2$を解にもつ方程式を1つ例示せよ.
この動画を見る 

#13数検1級1次過去問 複素関数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$

$z=a+bi$とする.
$e^z=-i$を解け.ただし,$0\leqq b\lt 2\pi$とする.
この動画を見る 

数学「大学入試良問集」【2−2 高次方程式と解】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\alpha=\displaystyle \frac{3+\sqrt{ 7 }\ i}{2}$とする。
ただし、$i$は虚数単位である。次の問いに答えよ。
(1)
$\alpha$を解にもつような2次方程式$x^2+px+q=0(p,q$は整数)を求めよ。

(2)
整数$a,b,c$を係数とする3次方程式$x^3+ax^2+bx+c=0$について、解の1つは$\alpha$であり、また$0 \leqq x \leqq 1$の範囲に実数解を1つもつとする。
このような整数の組$(a,b,c)$を全て求めよ。
この動画を見る 
PAGE TOP