【数Ⅱ】【複素数と方程式】剰余の定理と因数定理1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【複素数と方程式】剰余の定理と因数定理1 ※問題文は概要欄

問題文全文(内容文):
次の有理数の範囲で因数分解せよ。
(1)$4x^3+x+1$
(2)$2x^3-x^2+9$
(3)$3x^3+8x^2-1$

次の式を因数分解せよ。
(1)$x^4+5x^3+5x^2-5x-6$
(2)$x^4+4x^3-x^2-16x-12$

$P(x)=x^3+ax^2+bx^+c$とする。$P(x)$は$x^2-1$で割り切れ、また、$P(x)$を$2$で割ると余りが$3$である。このとき、定数$a,b,c$の値を求めよ。
チャプター:

0:00 オープニング
0:04 問題1の解説
9:34 問題2の解説
15:04 問題3の解説

単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の有理数の範囲で因数分解せよ。
(1)$4x^3+x+1$
(2)$2x^3-x^2+9$
(3)$3x^3+8x^2-1$

次の式を因数分解せよ。
(1)$x^4+5x^3+5x^2-5x-6$
(2)$x^4+4x^3-x^2-16x-12$

$P(x)=x^3+ax^2+bx^+c$とする。$P(x)$は$x^2-1$で割り切れ、また、$P(x)$を$2$で割ると余りが$3$である。このとき、定数$a,b,c$の値を求めよ。
投稿日:2025.02.18

<関連動画>

【数Ⅱ】複素数と方程式:解と係数の関係:「解と係数の関係」の基本を10分でマスター!

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
解と係数の関係の基本を10分でマスター!例題も4問解説!
この動画を見る 

福田のわかった数学〜高校2年生064〜三角関数(3)三角方程式の基礎

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(3) 三角方程式の基礎
(1)$\sin\theta=-\frac{1}{2}$  (2)$\cos\theta=\frac{\sqrt3}{2}$  (3)$\tan\theta=-1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
この動画を見る 

横浜国大 三角方程式 4倍角

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$
$1-2\cos 3\theta+\cos4\theta=0$
解の個数を求めよ

出典:2000年横浜国立大学 過去問
この動画を見る 

【高校数学】 数Ⅱー48 高次方程式③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎1の3乗根の1つである$\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$を$w$とするとき、次の式の値を求めよう。

①$w^2$

②$w^3$

③$w^2+w+1$

④$w^4+w^5$

⑤$w^{12}$
この動画を見る 

「20+20=200」になる理由を解説

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「20+20=200」になる理由を解説しています。
この動画を見る 
PAGE TOP