【数Ⅰ】【2次関数】2次不等式応用1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次不等式応用1 ※問題文は概要欄

問題文全文(内容文):
2次不等式$ax^2+x+b\gt 0$の解が$x\lt -3,2\lt x$であるとき、定数$a,b$の値を求めよ。

$a,b$は定数とする。2次不等式$4x^2+ax+b\lt 0$の解が$1\lt x\lt \dfrac{5}{4}$であるとき、2次不等式$bx^2+ax+4\geqq 0$の解を求めよ。
チャプター:

0:00 オープニング
0:05 問題1
2:26 問題2

単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式$ax^2+x+b\gt 0$の解が$x\lt -3,2\lt x$であるとき、定数$a,b$の値を求めよ。

$a,b$は定数とする。2次不等式$4x^2+ax+b\lt 0$の解が$1\lt x\lt \dfrac{5}{4}$であるとき、2次不等式$bx^2+ax+4\geqq 0$の解を求めよ。
投稿日:2024.12.05

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]右の図のように、$\triangle ABC$の外側に辺AB,BC,CAをそれぞれ1辺とする
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ
線分で結んだ図形を考える。以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$ とする。

(1)$b=6, c=5, \cos A=\frac{3}{5}$のとき、$\sin A=\frac{\boxed{セ}}{\boxed{ソ}}$であり、
$\triangle ABC$の面積は$\boxed{タチ}$、$\triangle AID$の面積は$\boxed{ツテ}$である。

(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。
このとき、$S_1-S_2-S_3$ は
・$0° \lt A \lt 90°$のとき$\boxed{ト}$ ・$A=90°$のとき$\boxed{ナ}$
・$90° \lt A \lt 180°$のとき$\boxed{ニ}$

$\boxed{ト}~\boxed{ニ}$の解答群
⓪0である  ①正の値である  ②負の値である  ③正の値も負の値もとる

(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{ヌ}$である。

$\boxed{ヌ}$の解答群
⓪$a \lt b \lt c$ならば$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば$T_1 \lt T_2 \lt T_3$
②Aが鈍角ならば$T_1 \lt T_2$ かつ$T_1 \lt T_3$
③$a,b,c$の値に関係なく、$T_1 = T_2 = T_3$

(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さいもの
を求める。$0° \lt A \lt 90°$のとき、$ID \boxed{ネ} BC$であり、
$(\triangle AID$の外接円の半径)$\boxed{ノ}(\triangle ABCの外接円の半径)$
であるから、外接円の半径が最も小さい三角形は
$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{ハ}$である。
$0° \lt A \lt B \lt 90° \lt C$のとき、$\boxed{ヒ}$である。

$\boxed{ネ}、\boxed{ノ}$の解答群
⓪$\lt$   ①$=$   ②$\gt$

$\boxed{ハ}、\boxed{ヒ}$の解答群
⓪$\triangle ABC$   ①$\triangle AID$   ②$\triangle BEF$   ③$\triangle CGH$

2021共通テスト数学過去問
この動画を見る 

式の値 高校数学

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
abc=1のとき
$\frac{1}{ab+a+1} +\frac{1}{bc+b+1} + \frac{1}{ca+c+1}$
の値を求めよ
この動画を見る 

【数学】中高一貫校用問題集:図形と式:軌跡と方程式:2直線の交点の軌跡(直交する場合)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と計量#図形と方程式#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
mが実数全体を取って動くとき、$x+my-1=0,mx-y+2m=0$の交点Pの軌跡を求めよ
この動画を見る 

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問前編〜空間図形の通過範囲の面積と体積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、ェ$\gt 0$の領域において点 A ( 0 , -1 , 0 )から点 B ( 0 , 1 , 0 )まで移動する C 上の動点を P とする。
( 1 )下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R のz座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体について、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、$\fbox{ア}$で表される概形となり、その面積は$\fbox{イ}$である。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1:$\fbox{ウ}$に内分する点である。点 Pの位置に依らず、線分の長さについて$\fbox{エ}×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MHが通過する領域の概形は$\fbox{オ}$であり、面積は$\frac {\sqrt {{\fbox{カ}}}}{\fbox{キ}}\pi$である。
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線は$/fbox{ク}$が描く曲線である。
$\fbox{ク}$の解答群
①点Q
②点R
③設問(a)で考えた点H
④線分QRとyz平面との交点
⑤線分QRを1:$\sqrt{2}$に内分する点
⑥線分QRを$\sqrt{2}$:1に内分する点
⑦三角形PQRの重心からッ線分QRに引いた垂線と線分QRとの交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\frac{\fbox{ケ}}{\fbox{コ}}\pi$である。また$\angle PQR$の面積は、線分 PQを直径とする円の面積の$\frac{\fbox{サ}}{\pi}$倍である。よって、立体$V$の体積は$\frac{\fbox{シ}}{\fbox{ス}}$である。
( 2 ) $z \geqq 0$の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線$L$を考える。ただし、 Q, T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。
点 P が( 1 , 0 , 0 )であるとき、放物線$L$を表す式は
$y=0,z=\fbox{セソ}x^2+\fbox{タ}$(ただし、-1 \leq x \leq 1)であり、この放物線と線分PQで囲まれる図形の面積は$\frac{\fbox{チ}}{\fbox{ツ}}$である。
点 P が点 A から点 B まで移動するとき、放物線$L$と線分 PQ で囲まれる図形が通過してできる立体の体積は$\frac{\fbox{テト}}{\fbox{ナ}}$である。

2023杏林大学過去問
この動画を見る 

連立方程式 2通りで解説!!  コメント欄に訂正あり。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
xy=2 \\
yz=6 \\
zx=3
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP