【高校数学】 数B-58 等差数列とその和② - 質問解決D.B.(データベース)

【高校数学】 数B-58 等差数列とその和②

問題文全文(内容文):
①初項3,公差4の等差数列において,47となる項は第何項か求めよう.

②$4,k,6k$が等差数列であるとき,$k$の値を求めよう.

③第10項が31,第25項が76である等差数列$\{a_n \}$の一般項を求めよう.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①初項3,公差4の等差数列において,47となる項は第何項か求めよう.

②$4,k,6k$が等差数列であるとき,$k$の値を求めよう.

③第10項が31,第25項が76である等差数列$\{a_n \}$の一般項を求めよう.
投稿日:2016.01.22

<関連動画>

【For you 動画-15】  数B-漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
一般項${an}$を出す公式
【等差】$a_{n}=$①____
【等比】$a_{n}=$②____
【階差】$(a_{n+1} -a_{n}=b_{n})$
③____のとき
$a_{n}=$④____________

◎グループ分けをしよう!

$\boxed{ A } a_{n+1} =2a_{n}$
$\boxed{ B } a_{n+1}-a_{n} =3^{n}$
$\boxed{ C } a_{n+1}+5a_{n} =0$
$\boxed{ D } a_{n+1}=a_{n}+7$
$\boxed{ E } a_{n+1}-3a_{n}=4$
$\boxed{ F } a_{n+1}-a_{n}=-2n+1$

等差数列は⑤____,等比数列は⑥____
階差数列は⑦____, 変形が必要なのは⑧____
⑧を変形すると⑨________ になる。
この動画を見る 

09和歌山県教員採用試験(数学:2番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$a_1=1,a_{n+1}=\dfrac{a_n}{4a_n+3}$
一般項$a_n$を求めよ.
この動画を見る 

【高校数学】等比中項の証明~理解して暗記しよう~ 3-6【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【数学B】等比中項の証明についての説明動画です
この動画を見る 

熊本大(医)整数・数列・二次関数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#整数の性質#数列#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^n$の一の位を$a_n(n$自然数$)$

(1)
$a_{99}$


(2)
$-n^2+2na_n$の最大値とそのときの$n$

出典:1989年熊本大学医学部 過去問
この動画を見る 

等差数列の一般項 山形大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013年 山形大学 過去問

公差が0でない等差数列{$a_n$}
$a_5^2+a_6^2=a_7^2+a_8^2$
$\displaystyle \sum_{n=1}^{13} a_n=13$
一般項$a_n$を求めよ。
この動画を見る 
PAGE TOP