指数法則 - 質問解決D.B.(データベース)

指数法則

問題文全文(内容文):
$ 12^{a+b}=18^{2a-b}$とするとき,
$3^{\frac{a}{b}}$はいくつか?
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 12^{a+b}=18^{2a-b}$とするとき,
$3^{\frac{a}{b}}$はいくつか?
投稿日:2022.11.01

<関連動画>

問題は解けるようにできている。 指数の計算 早実

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(-3)^{20}-(-3)^{15} \times 81}{4} -3^{19}$

早稲田実業学校
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数計算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を簡単にせよ。
(1) $(\log_{2} 9+\log_{8} 3)(\log_{3} 2+\log_{9} 4)$
(2) $\log_{4} 3・\log_{9} 25・\log_{5} 8)$
(3) $\log_{2} 10・\log_{5} 10-(\log_{2} 5+\log_{5} 2)$

$a=\log_{2} 3$,$b=\log_{2} 5$とするとき、次の式をa,bで表せ。
(1) $\log_{2} 15$
(2) $\log_{2} 75$
(3) $\log_{4} 45$

$p=\log_{a} x$,$q=\log_{a} y$,$r=\log_{a} z$であるとき、次の各式をp,q,rで表せ。
ただし、a,x,y,zは正の数とし、a≠1とする。
(1) $\log_{a} x²y³z⁴$
(2) $\log_{a} \frac{x}{(yz)^2}$
(3) $\log_{a} \frac{x\sqrt{y}}{\sqrt[3]{z}}$

$a=\log_{15} 3$, $b=\log_{3} 2$とするとき、次の式をa,bで表せ。
(1) $\log_{15} 2$
(2) $\log_{15} 5$
この動画を見る 

福田のおもしろ数学048〜10秒チャレンジ〜大小比較

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2^{55},3^{44},4^{33},5^{22}$を小さい順に並べなさい。
この動画を見る 

大学入試問題#241 早稲田大学(2014) #指数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=(27^x+\displaystyle \frac{1}{27^x})-5(9^x+\displaystyle \frac{1}{9^x})$
$-5(3^x+\displaystyle \frac{1}{3^x})+1$の最小値と、そのときの$x$の値を求めよ。

出典:2014年早稲田大学 入試問題
この動画を見る 

埼玉大 3次不等式と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#微分法と積分法#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1)(n+1)^3\gt n^3+(n-1)^3$を満たす最大の整数$n$を求めよ.
(2)$n=(1)$の解,$x\gt 0$のとき
$(n+1)^{x+3}\gt n^{x+3}+(n-1)^{x+3}$を証明せよ.

埼玉大過去問
この動画を見る 
PAGE TOP