【数Ⅲ】【微分とその応用】関数のグラフ2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数のグラフ2 ※問題文は概要欄

問題文全文(内容文):
次の関数のグラフの概形をかけ。
(1) $y=\dfrac{x^3}{x^2-4}$
(2) $y=x+\sqrt{1-x^2}$
(3) $y=x\sqrt{1-x^2}$
(4) $y=e^{\frac1x}$
(5) $y=e^{-x}\cos x\quad (0\leqq x \leqq 2\pi)$
チャプター:

0:00 オープニング
0:03 問題概要
1:23 (1)解説
5:24 (2)解説
7:39 (3)解説
9:15 (4)解説
11:54 (5)解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフの概形をかけ。
(1) $y=\dfrac{x^3}{x^2-4}$
(2) $y=x+\sqrt{1-x^2}$
(3) $y=x\sqrt{1-x^2}$
(4) $y=e^{\frac1x}$
(5) $y=e^{-x}\cos x\quad (0\leqq x \leqq 2\pi)$
投稿日:2025.03.05

<関連動画>

【数Ⅲ】微分法:伝説の静岡大学のグラフの問題を紹介!!どんなグラフになるか予想しよう!(概要欄にネタバレあり)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$f(x),g(x)$を $f(x)=x^4-x^2+6(\vert x\vert\leqq 1),\dfrac{12}{\vert x\vert +1}(\vert x\vert\gt 1)$,$g(x)=\dfrac{1}{2}\cos2\pi x+\dfrac{7}{2}(\vert x\vert\leqq 2)$ で定義する。このとき次の問いに答えよ。 
$f(x),g(x)$の増減を調べ、2曲線$C_1:y=f(x),C_2:y=g(x)$のグラフの概形を同じ座標平面上にかけ。
この動画を見る 

【数Ⅲ】微分法:高次導関数 次の等式を数学的帰納法によって証明せよ。nは自然数とする。d^n/dx^n cosx=cos(x+nπ/2)

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を数学的帰納法によって証明せよ。nは自然数とする。
$\dfrac{d^n}{dx^n}\cos x=\cos\left(x+\dfrac{n\pi}{2}\right)$
この動画を見る 

【高校数学】数Ⅲ-104 高次導関数②

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$y=e^{-x}\sin x$のとき,$y''+2y'+2y=0$を示せ。

②$y=e^{2x}\sin x$のとき,$y''+ay'+by=0$となるような
定数$a,b$の値を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系063〜微分(8)多重因子(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(8) 多重因子(2)
$f(x)=ax^4+bx^3+cx^2+dx+e$ を
$(x-1)^3$で割った余りを$f(1),f'(1),f''(1)$を
用いて表せ。
この動画を見る 

大学入試問題#436「2次試験までに一度は解くべき問題!!」 東京大学(1995) #不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
すべての正の実数$x,y$に対し、
$\sqrt{ x }+\sqrt{ y } \leqq k\sqrt{ 2x+y }$ が成り立つような実数$k$の最小値を求めよ

出典:1995年東京大学 入試問題
この動画を見る 
PAGE TOP