問題文全文(内容文):
\begin{eqnarray}
第4問 (1)5^4=625を2^4で割った時の余りは1に等しい。このことを用いると、不定方程式\\
\\
5^4x-2^4y=1 \ldots①\\
\\
の整数解のうち、xが正の整数で最小になるのはx=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }\\であることがわかる。\\
また、①の整数解のうち、xが2桁の正の整数で最小になるのは\\
x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ } である。\\
\\
(2)次に、625^2を5^5で割った時の余りと、2^5で割った時の余りについて考えてみよう。\\
まず、\\
625^2=5^{\boxed{ケ}}\\
であり、またm=\boxed{\ \ イウ\ \ }とすると、625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1 である。\\
これらにより、625^2を5^5で割った時の余りと、2^5で割った時の余りがわかる。\\
\\
(3)(2)の考察は、不定方程式\\
\\
5^5x-2^5y=1 \ldots②\\
\\
の整数解を調べるために利用できる。x,yを②の整数解とする。\\
5^5xは5^5の倍数であり、2^5で割った時の余りは1となる。よって(2)により、\\
5^5x-625^2は5^5でも2^5でも割り切れる。5^5と2^5は互いに素なので\\
5^5x-625^2は5^5・2^5の倍数である。このことから、②の整数解のうち、\\
xが3桁の正の整数で最小になるのは\\
x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }\\
であることが分かる。\\
\\
(4)11^4を2^4で割った時の余りは1に等しい。不定方程式\\
11^5x-2^5y=1\\
の整数解のうち、xが正の整数で最小になるのは\\
x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ } である。
\end{eqnarray}
2022共通テスト数学過去問
\begin{eqnarray}
第4問 (1)5^4=625を2^4で割った時の余りは1に等しい。このことを用いると、不定方程式\\
\\
5^4x-2^4y=1 \ldots①\\
\\
の整数解のうち、xが正の整数で最小になるのはx=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }\\であることがわかる。\\
また、①の整数解のうち、xが2桁の正の整数で最小になるのは\\
x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ } である。\\
\\
(2)次に、625^2を5^5で割った時の余りと、2^5で割った時の余りについて考えてみよう。\\
まず、\\
625^2=5^{\boxed{ケ}}\\
であり、またm=\boxed{\ \ イウ\ \ }とすると、625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1 である。\\
これらにより、625^2を5^5で割った時の余りと、2^5で割った時の余りがわかる。\\
\\
(3)(2)の考察は、不定方程式\\
\\
5^5x-2^5y=1 \ldots②\\
\\
の整数解を調べるために利用できる。x,yを②の整数解とする。\\
5^5xは5^5の倍数であり、2^5で割った時の余りは1となる。よって(2)により、\\
5^5x-625^2は5^5でも2^5でも割り切れる。5^5と2^5は互いに素なので\\
5^5x-625^2は5^5・2^5の倍数である。このことから、②の整数解のうち、\\
xが3桁の正の整数で最小になるのは\\
x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }\\
であることが分かる。\\
\\
(4)11^4を2^4で割った時の余りは1に等しい。不定方程式\\
11^5x-2^5y=1\\
の整数解のうち、xが正の整数で最小になるのは\\
x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ } である。
\end{eqnarray}
2022共通テスト数学過去問
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
第4問 (1)5^4=625を2^4で割った時の余りは1に等しい。このことを用いると、不定方程式\\
\\
5^4x-2^4y=1 \ldots①\\
\\
の整数解のうち、xが正の整数で最小になるのはx=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }\\であることがわかる。\\
また、①の整数解のうち、xが2桁の正の整数で最小になるのは\\
x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ } である。\\
\\
(2)次に、625^2を5^5で割った時の余りと、2^5で割った時の余りについて考えてみよう。\\
まず、\\
625^2=5^{\boxed{ケ}}\\
であり、またm=\boxed{\ \ イウ\ \ }とすると、625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1 である。\\
これらにより、625^2を5^5で割った時の余りと、2^5で割った時の余りがわかる。\\
\\
(3)(2)の考察は、不定方程式\\
\\
5^5x-2^5y=1 \ldots②\\
\\
の整数解を調べるために利用できる。x,yを②の整数解とする。\\
5^5xは5^5の倍数であり、2^5で割った時の余りは1となる。よって(2)により、\\
5^5x-625^2は5^5でも2^5でも割り切れる。5^5と2^5は互いに素なので\\
5^5x-625^2は5^5・2^5の倍数である。このことから、②の整数解のうち、\\
xが3桁の正の整数で最小になるのは\\
x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }\\
であることが分かる。\\
\\
(4)11^4を2^4で割った時の余りは1に等しい。不定方程式\\
11^5x-2^5y=1\\
の整数解のうち、xが正の整数で最小になるのは\\
x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ } である。
\end{eqnarray}
2022共通テスト数学過去問
\begin{eqnarray}
第4問 (1)5^4=625を2^4で割った時の余りは1に等しい。このことを用いると、不定方程式\\
\\
5^4x-2^4y=1 \ldots①\\
\\
の整数解のうち、xが正の整数で最小になるのはx=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }\\であることがわかる。\\
また、①の整数解のうち、xが2桁の正の整数で最小になるのは\\
x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ } である。\\
\\
(2)次に、625^2を5^5で割った時の余りと、2^5で割った時の余りについて考えてみよう。\\
まず、\\
625^2=5^{\boxed{ケ}}\\
であり、またm=\boxed{\ \ イウ\ \ }とすると、625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1 である。\\
これらにより、625^2を5^5で割った時の余りと、2^5で割った時の余りがわかる。\\
\\
(3)(2)の考察は、不定方程式\\
\\
5^5x-2^5y=1 \ldots②\\
\\
の整数解を調べるために利用できる。x,yを②の整数解とする。\\
5^5xは5^5の倍数であり、2^5で割った時の余りは1となる。よって(2)により、\\
5^5x-625^2は5^5でも2^5でも割り切れる。5^5と2^5は互いに素なので\\
5^5x-625^2は5^5・2^5の倍数である。このことから、②の整数解のうち、\\
xが3桁の正の整数で最小になるのは\\
x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }\\
であることが分かる。\\
\\
(4)11^4を2^4で割った時の余りは1に等しい。不定方程式\\
11^5x-2^5y=1\\
の整数解のうち、xが正の整数で最小になるのは\\
x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ } である。
\end{eqnarray}
2022共通テスト数学過去問
投稿日:2022.01.18