岩手大 微分 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

岩手大 微分 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
岩手大学過去問題
f(x)=x4+a(x2)2(a>0)
(1)f(x)が極小値をもつためのaの範囲
(2)f(x)が極小値を持つとき、その極小値を与えるxの値をtとする。2<t<3を示せ。
(3)(2)のとき、f(t)>-27を示せ。
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
f(x)=x4+a(x2)2(a>0)
(1)f(x)が極小値をもつためのaの範囲
(2)f(x)が極小値を持つとき、その極小値を与えるxの値をtとする。2<t<3を示せ。
(3)(2)のとき、f(t)>-27を示せ。
投稿日:2018.08.14

<関連動画>

大分大(医) 面積 積分計算の工夫 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大分大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
f(x)=(xa)(x4)(xb)
a<4<b

(1)
f(x)x軸とで囲まれる2つの部分の面積が等しいとき、a+bの値は?


(2)
a>o,f(x),x,y軸とで囲まれる3つの部分の面積が等しいとき、a,bの値は?


出典:2006年大分大学 過去問
この動画を見る 

【数Ⅲ】【微分とその応用】n次導関数基本 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の第3次導関数を求めよ。
y= √ (2x+1)
以下、略

次のことが成り立つことを証明せよ。
y= x√ (1+x²)のとき、(1+x²)y'' + xy' = 4y
以下、略
この動画を見る 

福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4立方体OADB-CFGEを考える。0x1となる実数xに対し、
OP=x OG
なる点Pを考え、APB=θとおく。

(1)x=0のとき、θ=    である。また、x=1のとき、θ=    である。

     ,    の選択肢
(a)0  (b)π6  (c)π3  (d)π2
(e)23π  (f)56π  (g)π

(2)0<x<1の範囲でθ=π2となるxの値は、x=        である。

(3)y=cosθとおき、yをxの関数と考える。このとき、yをxで表せ。また、
0x1の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・
座標軸との共有点・極値・変曲点などを明らかにせよ。

2021上智大学理工学部過去問
この動画を見る 

2023年京大の数学!最大値・最小値【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の関数f(x)の最大値と最小値を求めよ。

f(x)=ex2+14x2+1+1ex2+14x2+1 (1x1)

ただし、eは自然対数の底であり、その値はe=2.71である。

2023京都大過去問
この動画を見る 

16奈良県教員採用試験(数学:高校5番 y軸回転体)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣ l:y=x1x2 (0x1)
(1)極値、グラフ
(2)l、x軸で囲まれた図形をy軸を中心にした回転体の体積V
この動画を見る 
PAGE TOP preload imagepreload image