2021年藤田医科大 - 質問解決D.B.(データベース)

2021年藤田医科大

問題文全文(内容文):
$x,y$は実数である.
$\left(\dfrac{2+\sqrt{-77}}{9}\right)^{2021}=\dfrac{x+y\sqrt{-77}}{9}$
$x^2+77y^2$の値を求めよ.

2021藤田医科大過去問
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は実数である.
$\left(\dfrac{2+\sqrt{-77}}{9}\right)^{2021}=\dfrac{x+y\sqrt{-77}}{9}$
$x^2+77y^2$の値を求めよ.

2021藤田医科大過去問
投稿日:2021.01.29

<関連動画>

ルートの計算!!2通りで解説

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{54^2-48^2-6^2}$
この動画を見る 

ざ・挟み撃ち

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{\sqrt{n^4+1}}+\dfrac{2}{\sqrt{n^4+2}}+・・・・・・+\dfrac{n}{\sqrt{n^4+n}}$
$\displaystyle \lim_{n\to \infty} \displaystyle \sum_{k=1}^{n}\dfrac{k}{\sqrt{n^4+k}}$
$a_n=\displaystyle \sum_{k=1}^n \dfrac{n}{\sqrt{k}}$
$b_n=\displaystyle \sum_{k=1}^n \dfrac{1}{\sqrt{2k+1}}$
$\displaystyle \lim_{n\to \infty} a_n,\displaystyle \lim_{n\to \infty}\dfrac{bn}{an}$を求めよ.

東大1990過去問
この動画を見る 

【背理法はこう解け!】背理法の考え方と解法のテンプレはこうだ!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\sqrt{ 3 }$が無理数なことを証明せよ
この動画を見る 

小学生も解ける!!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle a + \angle b + \angle c + \angle d + \angle e=?$
この動画を見る 

3乗根の方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[3]{10-2x}+\sqrt[3]{2x-1}=3$
これを解け.
この動画を見る 
PAGE TOP