大阪大 等比数列 訂正 - 質問解決D.B.(データベース)

大阪大 等比数列 訂正

問題文全文(内容文):
訂正
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?



出典:大阪大学 過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
訂正
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?



出典:大阪大学 過去問
投稿日:2019.07.09

<関連動画>

福田の数学〜慶應義塾大学2023年看護医療学部第2問(3)〜推定して数学的帰納法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (3) 次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1$=1, $a_{n+1}$=$\sqrt{a_n^2+1}$ ($n$=1,2,3,...)
(i)$a_2$=$\boxed{\ \ シ\ \ }$, $a_3$=$\boxed{\ \ ス\ \ }$であり、一般項$a_n$を推定すると$a_n$=$\boxed{\ \ セ\ \ }$である。
(ii)一般項$a_n$が$a_n$=$\boxed{\ \ セ\ \ }$であることの数学的帰納法による証明を述べよ。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田のおもしろ数学175〜0から10^nまでの数に現れる各桁の数字の総和を求める

アイキャッチ画像
単元: #数列#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
0から$10^n$までに現れる各桁の数字の総和を求めてください。($10^n$も含む)
この動画を見る 

【数B】数列: 等差×等比型の数列和! ∑[k=1からn]k・2^kの和を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \sum_{k\to1}^k・2^k$の和を求めよ.
この動画を見る 

【数学A】一橋大学文系2010 確率の問題(解説)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$n$を3以上の自然数とする
サイコロを$n$回投げ、出た目の数をそれぞれ順に$X_1,X_2,$・・・$,X_n$とする
$i=2,3,…n$に対して$Xi=Xi-1$となる事象を$Ai$ことする。
(1)$A_2,A_3,…,A_n$のうち少なくとも1つが起こる確率$pn$は?
(2)$A_2,A_3,…,A_n$少なくとも2つが起こる確率$gn$は?
この動画を見る 

無限等比級数

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\frac{1}{16} +\frac{1}{32} + \cdots =?$
この動画を見る 
PAGE TOP