【数学】3分で和積公式が馬鹿でもわかる考え方 - 質問解決D.B.(データベース)

【数学】3分で和積公式が馬鹿でもわかる考え方

問題文全文(内容文):
【数学】3分で和積公式解説動画です
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】3分で和積公式解説動画です
投稿日:2018.01.22

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(2)〜折れ線の最小と内接円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#三角関数#点と直線#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=23xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、APO=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=    であり、三角形ABPの内接円の半径は    である。

2023慶應義塾大学薬学部過去問
この動画を見る 

【高校数学】 数Ⅱ-99 三角関数を含む方程式・不等式①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
0θ2πのとき、次の方程式を解こう。また、θの範囲に制限がないときの解を求めよう。

sinθ=+32

2cosθ+1=0

3tanθ=1
この動画を見る 

福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4 以下の文章を読んで後の問いに答えよ。
三角関数cosx, sinxについては加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数f(x), g(x)が以下の条件を満たすとする。
(A)すべてのx, yについてf(x+y)=f(x)f(y)-g(x)g(y)
(B)すべてのx, yについてg(x+y)=f(x)g(y)+g(x)f(y)
(C)f(0)0
(D)f(x), g(x)はx=0で微分可能でf(0)=0, g(0)=1
条件(A), (B), (C)からf(0)=1, g(0)=0 がわかる。以上のことからf(x), g(x)はすべてのxの値で微分可能で、f(x)=g(x), g(x)=f(x)が成立することが示される。上のことから{f(x)+ig(x)}(cosxisinx)=1 であることが、実部と虚部を調べることによりわかる。ただしiは虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数f(x)=cosx, g(x)=sinxであることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', f(x), g(x)はx=0で微分可能でf(0)=a, g(0)=b
におきかえて、条件(A), (B), (C), (D)'を満たすf(x), g(x)はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)からf(0)=1, g(0)=0が上と同様にわかる。ここで
p(x)=eabxf(xb), q(x)=eabxg(xb)
とおくと、条件(A), (B), (C), (D)において、f(x)p(x)に、g(x)q(x)におきかえた条件が満たされる。すると前半の議論により、p(x), q(x)がまず求まり、このことを用いるとf(x)=    , g(x)=    が得られる。
(1)下線部①について、f(0)=1, g(0)=0であることを示せ。
(2)下線部②について、f(x)がすべてのxの値で微分可能な関数であり、
f(x)=g(x)となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
{f(x)+ig(x)}(cosxisinx)=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、f(x)p(x)に、g(x)q(x)におきかえた条件が満たされることを示せ。つまりp(x)q(x)が、
(B)すべてのx, yについて、q(x+y)=p(x)q(y)+q(x)p(y)
(D)p(x), q(x)はx=0 で微分可能でp(0)=0, q(0)=1
を満たすことを示せ。また空欄    ,     に入る関数を求めよ。

2023九州大学理系過去問
この動画を見る 

福田のわかった数学〜高校2年生079〜三角関数(18)2直線のなす角(2)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学II 三角関数(18) なす角(2)

y=3x+1π6の角をなし、原点を通る直線の方程式を求めよ。
この動画を見る 

【数Ⅱ】【三角関数】加法定理の応用3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0≦x<2π のとき、次の方程式を解け。
(1)cos2x=cosx
(2)sin2x=cosx
(3)2cos2x+4cosx-1=0
(4)sinx(1+cos2x)+sin2x(1+cosx)=0
この動画を見る 
PAGE TOP preload imagepreload image