問題文全文(内容文):
数列 $\{a_{n}\}$ が
$a_{1}+2a_{2}+3a_{3}+\cdots +na_{n}=n(n+1)$
を満たすとき、和 $a_{1}+a_{2}+\cdots a_{n}$ を求めよ。
数列 $\{a_{n}\}$ が
$a_{1}+2a_{2}+3a_{3}+\cdots +na_{n}=n(n+1)$
を満たすとき、和 $a_{1}+a_{2}+\cdots a_{n}$ を求めよ。
チャプター:
00:00 OP
00:46 解説
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列 $\{a_{n}\}$ が
$a_{1}+2a_{2}+3a_{3}+\cdots +na_{n}=n(n+1)$
を満たすとき、和 $a_{1}+a_{2}+\cdots a_{n}$ を求めよ。
数列 $\{a_{n}\}$ が
$a_{1}+2a_{2}+3a_{3}+\cdots +na_{n}=n(n+1)$
を満たすとき、和 $a_{1}+a_{2}+\cdots a_{n}$ を求めよ。
投稿日:2025.03.17





