福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その2(受験編) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その2(受験編)

問題文全文(内容文):
${\Large\boxed{1}}$ 空間内に3点$P\left(1,\displaystyle \frac{1}{2},0\right),Q\left(1,-\displaystyle \frac{1}{2},0\right),R\left(\displaystyle \frac{1}{4},0,\displaystyle \frac{\sqrt3}{4}\right)$を頂点とする
正三角形の板Sがある。Sをz軸のまわりに1回転させたとき、Sが
通過する点全体の作る立体の面積を求めよ。
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 空間内に3点$P\left(1,\displaystyle \frac{1}{2},0\right),Q\left(1,-\displaystyle \frac{1}{2},0\right),R\left(\displaystyle \frac{1}{4},0,\displaystyle \frac{\sqrt3}{4}\right)$を頂点とする
正三角形の板Sがある。Sをz軸のまわりに1回転させたとき、Sが
通過する点全体の作る立体の面積を求めよ。
投稿日:2018.07.04

<関連動画>

数学「大学入試良問集」【19−17 こぼれた水の体積と定積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
水を満たした半径2の半球体の容器がある。
これを静かに$\alpha^{ \circ }$傾けたとき、水面が$h$だけ下がり、こぼれ出た水の量と容器に残った水の量の比が$11:5$になった。
$h$と$\alpha$を求めよ。
この動画を見る 

大学入試問題#584「これは落としたくない!!」 京都帝国大学(1937) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{2x+3}{x^3+x^2-2x} dx$

出典:1937年京都帝国大学 入試問題
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第3問Part2〜容器に水を入れる

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $\pi$を円周率とする。$f(x)$=$x^2(x^2-1)$とし、$f(x)$の最小値を$m$とする。
(1)$m$=$\displaystyle\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$ である。
(2)$y$=$f(x)$で表される曲線を$y$軸の周りに1回転させてできる曲面でできた器に、$y$軸方向から静かに水を注ぐ。
(i)水面が$y$=$a$(ただし$m$≦$a$≦0)になったときの水面の面積は$\boxed{\ \ セ\ \ }$である。
(ii)水面が$y$=0になったときの水の体積は$\displaystyle\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\pi$ である。
(iii)上方から注ぐ水が単位時間あたり一定量であるとする。水面が$y$=0に達するまでは、水面の面積は、水を注ぎ始めてからの時間の$\displaystyle\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$ 乗に比例して大きくなる。
(iv)水面が$y$=2になったときの水面の面積は$\boxed{\ \ テ\ \ }\pi$であり、水の体積は$\displaystyle\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}\pi$ である。
この動画を見る 

大学入試問題#914「コメントむずい」 #学習院大学2023 #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#学習院大学
指導講師: ますただ
問題文全文(内容文):
$f(0)=0$
$f'(x)+\displaystyle \int_{0}^{1} f(t) dt=2e^{2x}-e^x$
を満たす関数$f(x)$を求めよ。

出典:2023年学習院大学
この動画を見る 

【数Ⅲ】【積分とその応用】y軸周りの回転体の体積1 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=x^2$, $x+\sqrt{y}=2$, $x=0$
(2)$y=x^2-4x+5$, $y=2x$
この動画を見る 
PAGE TOP