福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その2(受験編) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その2(受験編)

問題文全文(内容文):
${\Large\boxed{1}}$ 空間内に3点$P\left(1,\displaystyle \frac{1}{2},0\right),$$Q\left(1,-\displaystyle \frac{1}{2},0\right),$$R\left(\displaystyle \frac{1}{4},0,\displaystyle \frac{\sqrt3}{4}\right)$を頂点とする
正三角形の板$S$がある。$S$を$z$軸のまわりに1回転させたとき、$S$が
通過する点全体の作る立体の面積を求めよ。
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 空間内に3点$P\left(1,\displaystyle \frac{1}{2},0\right),$$Q\left(1,-\displaystyle \frac{1}{2},0\right),$$R\left(\displaystyle \frac{1}{4},0,\displaystyle \frac{\sqrt3}{4}\right)$を頂点とする
正三角形の板$S$がある。$S$を$z$軸のまわりに1回転させたとき、$S$が
通過する点全体の作る立体の面積を求めよ。
投稿日:2018.07.04

<関連動画>

【高校数学】毎日積分43日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int\frac{1}{sin^4x}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分17日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{2}}xsin^3xdx$
これを解け.
この動画を見る 

09愛知県教員採用試験(数学:2番 極限値)

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{1}{\sqrt{ 3 }}$
$f(x)=\displaystyle \int_{x}^{\sqrt{ 3 }x}\sqrt{ 1-t^2 }\ dt$とする。

$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$の極限値を求めよ。

出典:愛知県教員採用試験
この動画を見る 

【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)= \frac{2x^2-x-1}{x^2+2x+2}$ とする。
$(1)$ $\displaystyle \lim_{x \to - \infty} f(x)$ および $\displaystyle \lim_{x \to \infty} f(x)$ を求めよ。
$(2)$ 導関数 $f'(x)$ を求めよ。
$(3)$ 関数 $y=f(x)$ の最大値と最小値を求めよ。
$(4)$ 曲線 $y=f(x)$ と $x$ 軸で囲まれた部分の面積を求めよ。
この動画を見る 

【数Ⅲ】区分求積法【グラフの面積とはなにか。和が積分になる驚きの仕組み】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \left(\dfrac{k^2}{n^3}+\dfrac{3k}{n^2}+\dfrac{1}{n} \right)$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=1}^n \dfrac{1}{2k+n}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=n+1}^{3n}\dfrac{1}{\sqrt{kn}}$を求めよ.
この動画を見る 
PAGE TOP