【高校数学】 数A-74 合同式 - 質問解決D.B.(データベース)

【高校数学】 数A-74 合同式

問題文全文(内容文):
合同式を用いて,次のものを求めよう.

①$15^{30}$を$7$で割った余り

②整数$n$を$5$で割った余りが$3$であるとき,
$n^2+n+2$を$5$で割ったときの余り

③$123^{120}$の1の位
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
合同式を用いて,次のものを求めよう.

①$15^{30}$を$7$で割った余り

②整数$n$を$5$で割った余りが$3$であるとき,
$n^2+n+2$を$5$で割ったときの余り

③$123^{120}$の1の位
投稿日:2016.06.03

<関連動画>

福田の1.5倍速演習〜合格する重要問題067〜九州大学2017年度文系第4問〜最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 以下の問いに答えよ。
(1) 2017と225の最大公約数を求めよ。
(2) 225との最大公約数が15となる2017以下の自然数の個数を求めよ。
(3) 225との最大公約数が15であり、かつ1998との最大公約数が111となる2017以下の自然数を全て求めよ。

2017九州大学文系過去問
この動画を見る 

一橋大(1)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\neq 0$は実数である.
$x+\dfrac{1}{x}$が整数なら,$x^n+\dfrac{1}{x^n}$も整数であることを示せ.$n$は自然数である.

1991一橋大過去問
この動画を見る 

旭川医科大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
p^3-q^3-27r^3-9pqr=0 \\
p^2-10q-30r=11
\end{array}
\right.
\end{eqnarray}$
を満たす自然数$(p,q,r)$の組をすべて求めよ.

2015旭川医科大過去問
この動画を見る 

素数問題の良問だよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qは素数である.
$p^3-q^5=(p+q)^2$を満たす(p,q)の組をすべて求めよ.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$x,m,n$を全て求めよ.
$x^2=7^m-2^n$
この動画を見る 
PAGE TOP