【中学数学】2次方程式:x=-5+√19のとき、x²+10x+11の値を求めよ。 - 質問解決D.B.(データベース)

【中学数学】2次方程式:x=-5+√19のとき、x²+10x+11の値を求めよ。

問題文全文(内容文):
$x=-5+\sqrt{19}$のとき,$x^2+x+11$の値を求めよ。
単元: #数学(中学生)#中3数学#2次方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x=-5+\sqrt{19}$のとき,$x^2+x+11$の値を求めよ。
投稿日:2021.01.11

<関連動画>

【高校受験対策/数学】死守52

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守52

①$8+3\times(-2)$を計算しなさい。

➁$9a+1-2(3a-2)$を計算しなさい。

③$8x^2y \times(-6xy)$を計算しなさい。

④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。

⑤二次方程式$x^2+x-6=0$を解きなさい。

⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。

⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。

⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。

⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。

⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。

この動画を見る 

【高校受験対策】数学-死守11

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$(-2)\times (-3)+4$を計算しなさい.

②$\dfrac{2}{5}a+\dfrac{1}{3}a$を計算しなさい.

③$4(x+2y)-(6x+9y)$を計算しなさい.

④$5xy^2\times 7xy \div (-x)^2$を計算しなさい.

⑤$(\sqrt{2}+1)^2-\sqrt8$を計算しなさい.

⑥$x$についての2次方程式$x^2+ax-12=0$の解の一つが
$-2$であるとき,もう一つの解を求めなさい.

⑦右の図1のような半径$9cm$の半球があります.
この半球と等しい体積の円錐について考えます.
円錐の底面の半径が$9cm$であるとき,円錐の高さは何$cm$か求めなさい.

⑧右の図2は,ある学校の3年生50人の通学時間を調査し,
ヒストグラムに表したもので,平均値は$16.3$分でした.
下のアから工までの中から,
このヒストグラムからわかることについて正しく述べたものを1つ選び,
記号で答えなさい.

ア 通学時間の範囲は,16分である.

イ 通学時間の最頻値は,平均値よりも大きい.

ウ 通学時間の中央値が含まれる階級は,15分以上20分未満の階級である.

工 通学時間が20分以上25分未満の階級の相対度数は,$0.16$である.

図は動画内を参照
この動画を見る 

数学の先生こうじゃない?

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
数学の先生はこう
相似の証明を解説していきいます.
この動画を見る 

【数学】中3-70 三平方・空間図形への利用④(長さが最小編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\angle ABC$=90°、AB=4cm、BC=5cm、AD=6cmの三角柱があり、
BE上に点Pをとる。
AP+PFの長さが最小になるとき、その長さは?

②AB=5cm、AD=3cm、AE=4cmの直立法の頂点Dから、
辺AB、EFを通って頂点Gまで糸をまきつけた。
糸の長さが最小になるとき、その長さは?

※図は動画内参照
この動画を見る 

台形の中の線分 岩手県

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#岩手県高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
$EF= \ ?$
この動画を見る 
PAGE TOP