円錐と内接球3つ D 立教新座(改)2021 - 質問解決D.B.(データベース)

円錐と内接球3つ D 立教新座(改)2021

問題文全文(内容文):
球Pと球Qは半径が等しい
球Pと球Rは半径が異なる
(1)球Pの半径は?
(2)球Rの半径は?
*図は動画内参照

2021立教新座高等学校(改)
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
球Pと球Qは半径が等しい
球Pと球Rは半径が異なる
(1)球Pの半径は?
(2)球Rの半径は?
*図は動画内参照

2021立教新座高等学校(改)
投稿日:2021.02.02

<関連動画>

高校入試最上級レベル 球の断面積

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
立方体を次の各面で切断したときの球の断面積=?
(1)四角形BDHF
(2)△ACF
(3)△ACH
*図は動画内参照

城北高等学校
この動画を見る 

福田の1.5倍速演習〜合格する重要問題016〜京都大学2016年度理系数学第2問〜素数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学的帰納法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
素数p,qを用いて
$p^q+q^p$
と表される素数を全て求めよ。

2016京都大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第1問(1)〜互いに素な整数を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)2,3,4,...,13の12個の整数の中から異なる2個を無作為に取り出したとき、それら2個の整数が互いに素となる確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
この動画を見る 

20年5月数学検定1級1次試験(合同式)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.

20年5月数学検定1級1次試験(合同式)過去問
この動画を見る 

図形の性質 方べきの定理【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
■問題文
直径が2である円Oにおいて、1つの直径ABをBの方に延長して、BC=2ABとなる点Cをとる。また、Cから円Oに接線CTを引き、その接点をTとする。線分CT,ATの長さを求めよ。

右の図のように、点Aで同じ直線に接する2円O、O´がある。
この接線上のAと異なる点Bを通る1本の直線が円Oと2点C,Dで交わり, Bを通る他の直線が円 O′と2点E,Fで交わるとする。このとき, 4点 C, D, E, F は1つの円周上にあることを証明せよ。
この動画を見る 
PAGE TOP