2024年共通テスト徹底解説〜数学ⅠA第5問図形の性質〜福田の入試問題解説 - 質問解決D.B.(データベース)

2024年共通テスト徹底解説〜数学ⅠA第5問図形の性質〜福田の入試問題解説

問題文全文(内容文):
第5 問(1) $\triangle AQD$と直線CEに着目すると$\dfrac{QR}{RD}・\dfrac{DS}{SA}・\dfrac{ア}{CQ}=1$が成り立つのでQR:RD=イ:ウ となる。また、$\triangle AQD$と直線BEに着目するとQB:BD=エ:オ となる。
したがって、BQ:QR:RD=エ:イ:ウとなる個tが分かる。
(2)5点P,Q,R,S,Tが同一演習場にあるとし、AC=8とする。
(i)5点A,P,Q,S,Tに着目すると、AT:ST=1:2より、AT=$\sqrt{ カ }$となる。さらに5点D,Q,R,S,Tに着目すると$DR=4\sqrt{ 3 }$となることがわかる。
( 2 ) 3 点 A , B, C を通る円と点 D の位置関係を次の構想に基づいて調べよう。
構想:線分 AC と BD の交点 Q に着目し、 AQ $\cdot$ CQ と BQ $\cdot$ DQ の大小を比べる。
まず AQ $\cdot$ CQ = 5 $\cdot$ 3 = 15 かっ BQ $\cdot$ DQ =キクであるから
AQ$\cdot$CQ ケ BQ$\cdot$DQ $\cdots$①
が成り立つ。また、3点A,B,Cを通る\と直線BDとの交点のうち、Bと異なる点をXとするとAQ$\cdot$CQ ケ BQ$\cdot$XQ $\cdots$②
①②の左辺は同じなので①②の右辺と比べることによりXQ サ DQが得られる。したがって点DはA,B,Cを通る円の シ にある。
(2)3 点 C , D , E を通る円と 2 点 A , B の位置関係について調べよう。この星形の図形において、さらにCR = RS = SE = 3 となることがわかる。したがって、点 A は 3 点 C, E, D を通る円の ス にあり、点 B は 3 点 C, E, D を通る円の セ にある。

2024共通テスト過去問
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第5 問(1) $\triangle AQD$と直線CEに着目すると$\dfrac{QR}{RD}・\dfrac{DS}{SA}・\dfrac{ア}{CQ}=1$が成り立つのでQR:RD=イ:ウ となる。また、$\triangle AQD$と直線BEに着目するとQB:BD=エ:オ となる。
したがって、BQ:QR:RD=エ:イ:ウとなる個tが分かる。
(2)5点P,Q,R,S,Tが同一演習場にあるとし、AC=8とする。
(i)5点A,P,Q,S,Tに着目すると、AT:ST=1:2より、AT=$\sqrt{ カ }$となる。さらに5点D,Q,R,S,Tに着目すると$DR=4\sqrt{ 3 }$となることがわかる。
( 2 ) 3 点 A , B, C を通る円と点 D の位置関係を次の構想に基づいて調べよう。
構想:線分 AC と BD の交点 Q に着目し、 AQ $\cdot$ CQ と BQ $\cdot$ DQ の大小を比べる。
まず AQ $\cdot$ CQ = 5 $\cdot$ 3 = 15 かっ BQ $\cdot$ DQ =キクであるから
AQ$\cdot$CQ ケ BQ$\cdot$DQ $\cdots$①
が成り立つ。また、3点A,B,Cを通る\と直線BDとの交点のうち、Bと異なる点をXとするとAQ$\cdot$CQ ケ BQ$\cdot$XQ $\cdots$②
①②の左辺は同じなので①②の右辺と比べることによりXQ サ DQが得られる。したがって点DはA,B,Cを通る円の シ にある。
(2)3 点 C , D , E を通る円と 2 点 A , B の位置関係について調べよう。この星形の図形において、さらにCR = RS = SE = 3 となることがわかる。したがって、点 A は 3 点 C, E, D を通る円の ス にあり、点 B は 3 点 C, E, D を通る円の セ にある。

2024共通テスト過去問
投稿日:2024.01.17

<関連動画>

【2024年共通テスト解答速報(2日目)】日本最速解答速報LIVE|数学ⅠA→ⅡB→物理 ※冒頭7分55秒まで音声が乱れております。申し訳ございません。

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#数学(高校生)#理科(高校生)#大学入試解答速報#数学#共通テスト#物理#共通テスト#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
10000人登録目指しています。
何卒チャンネル登録お願いします!!!

※冒頭7分55秒まで音声が乱れております。申し訳ございません。


◆解答のまとめ◆
https://note.com/kobetsu_teacher/n/nf15e55b4c121

◆出演者◆
・TAKAHASHI名人
https://www.youtube.com/playlist?list=PLdLgDY469Qr7UEbDX8OecmSefwQulR35t
・ゆう☆たろう
https://www.youtube.com/playlist?list=PLdLgDY469Qr5zKa9ZgI9StW_-cNtbBDsn
・烈's study
https://www.youtube.com/playlist?list=PLdLgDY469Qr7QbP6MrNjpltLkbkyaggpv
・理数大明神
https://www.youtube.com/playlist?list=PLdLgDY469Qr6TpcFul6_A9hu5xZ1bQjNU

◆スタッフ◆
しまだじろう
https://www.youtube.com/playlist?list=PLdLgDY469Qr5kqaeicgkr6YhPZdkMEB3k

◆ドーナツ差し入れありがとう!!◆
岡ちゃん先生
https://www.youtube.com/playlist?list=PLdLgDY469Qr4OulJQO0KGCDMdykOS6pnX

◎対数の領域の問題で間違えた方はこちらを是非見てください!
(インタビューで烈's study!先生が言っていた動画です)
https://youtu.be/ZAXcZQC_sjw

◎ベクトルで間違えた方はこちらを是非見てください!
(インタビューでゆう☆たろう先生が言っていた動画です)
https://youtu.be/CYcQZEYqXj8

produced by 質問解決DB
https://kaiketsu-db.net/

produced by 理数個別チャンネル
https://www.youtube.com/@UCdQ0y9lyNRKcbH8dv2janrw
この動画を見る 

【篠原共通塾】2022年度「数学1A」共通テスト過去問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2022年度共通テスト「数学1A」の解説動画
この動画を見る 

【日本最速解答速報】共通テスト2023数学2B 第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第4問数列〜福田の入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数B
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第4問数列を徹底解説します

2024共通テスト過去問
この動画を見る 

共通テスト数学を、数学者が解いてみた結果【大学受験数学】

アイキャッチ画像
単元: #数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
第5問 (選択問題) (配点 20)

△ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。直 線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に 点Fをとる。直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとす る。

(1) 点Dは線分AGの中点であるとする。このとき、△ABCの形状に関係なく

AD/DE=ア/イ

である。また、点下の位置に関係なく

BP/AP=ウ×エ/オ
CQ/AQ = カ×キ/ク

であるので、つねに

BP/AP + CQ/AQ = ケ

となる。









の解答群(同じものを繰り返し選ん

でもよい。)

①BC

➁BF

③CF

④EF

⑤FP

⑥FQ

⑦PQ

数学1、数字A

[2] 以下の問題を解答するにあたっては、必要に応じて41 ページの三角比の 表を用いてもよい。

太郎さんと花子さんは、キャンプ場のガイドブックにある地図を見なが ら、後のように話している。


参考図


太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいか な。

花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べた ら、図1のようになったよ。点Cは、山頂Bから地点Aを通る 水平面に下ろした垂線とその水平面との交点のことだよ。

太郎:図1の角度は、AC、BCの長さを定規で測って、三角比の表を 用いて調べたら16°だったよ。

花子:本当に16なの? 図1の鉛直方向の縮尺と水平方向の縮尺は等 しいのかな?

数学Ⅰ・数学A

[3] 外接円の半径が3である△ABCを考える。点Aから直線BCに引いた垂 線と直線BCとの交点をDとする。

(1) AB = 5 AC=4とする。このとき
この動画を見る 
PAGE TOP