【数学A/整数】最大公約数と最小公倍数を求める - 質問解決D.B.(データベース)

【数学A/整数】最大公約数と最小公倍数を求める

問題文全文(内容文):
120と252の最大公約数と最小公倍数を求めよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
120と252の最大公約数と最小公倍数を求めよ。
投稿日:2022.01.29

<関連動画>

大学入試問題#880「基本の基本!」 #聖マリアンナ医科大学(2021) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$n,\sqrt{ n^2+2021 }$がともに自然数のとき、$n$の値をすべて求めよ。
$2021=43\times47$を利用してよい

出典:2021年聖マリアンナ医科大学
この動画を見る 

合同式 千葉大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.$x^2=7^{2n}(y^2+10z^2)$である.

(1)平方数を3で割った余りは0か1であることを示せ.
(2)$yz$は3の倍数であることを示せ.
(3)$y,z$が共に素数のとき,$x$を$n$を用いて表せ.

2003千葉大過去問
この動画を見る 

「20+20=200」になる理由を解説

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「20+20=200」になる理由を解説しています。
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n,X$は自然数である.これを解け.
$2^m+3^n=X^2$
この動画を見る 

中学生向け整数問題その3

アイキャッチ画像
単元: #中2数学#式の計算(単項式・多項式・式の四則計算)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
この動画を見る 
PAGE TOP