福田のおもしろ数学384〜整数部分と小数部分を含む連立方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学384〜整数部分と小数部分を含む連立方程式

問題文全文(内容文):
[a]はaの整数部分、{a}はaの小数部分
連立方程式
x+[y]+{z}=2025.1… ①
[x]+{y}+z=2025.2… ②
{x}+y+[z]=2025.3… ③

を解いて下さい。
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[a]はaの整数部分、{a}はaの小数部分
連立方程式
x+[y]+{z}=2025.1… ①
[x]+{y}+z=2025.2… ②
{x}+y+[z]=2025.3… ③

を解いて下さい。
投稿日:2025.01.20

<関連動画>

「二次関数の最大最小 場合分け②】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a \gt b0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(3)$k=m(a)$のグラフをかけ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(4)$K=M(a)$のグラフをかけ。
この動画を見る 

2つの平方の和

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+y^2$=
*図は動画内参照
この動画を見る 

【数Ⅰ】【2次関数】点の通過 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の条件を満たす放物線の方程式を求めよ。
$(1)$ 3点 $(-4,0), \, (-2,0), \, (0,-4)$ を通る。
$(2)$ 点 $(2,0)$ で $x$ 軸に接し、点 $(-2,12)$ を通る。

問題2
$a, \, b, \, c$ の値を入力すると、関数 $y=ax^2+bx+c$ のグラフが表示されるコンピュータソフトがある。ある $a, \, b, \, c$ の値を入力すると、グラフは図のように表示された (図は動画参照)。
$(1)$ $a, \, b, \, c, \, b^2-4ac, \, a+b+c$ の符号をいえ。
$(2)$ この $a, \, b$ の値を変えずに、$c$ の値だけを変化させたとき、変わらないものを次の中からすべて選べ。また、変わらない理由を説明せよ。
① グラフと $x$ 軸の共有点の個数
② グラフの頂点の $x$ 座標の符号
③ グラフの頂点の $y$ 座標の符号
この動画を見る 

指数がルート

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\frac{5^{\sqrt5}}{5^{\sqrt3}})^{\sqrt 5 +\sqrt 3}$
この動画を見る 

虚数係数の二次方程式(類)横浜市立(医)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$iz^2-4iz+3i+\sqrt3=0$

横浜市立(医)過去問
この動画を見る 
PAGE TOP