福田の数学〜早稲田大学2025人間科学部第4問〜3次方程式の解が直角三角形を作る条件 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025人間科学部第4問〜3次方程式の解が直角三角形を作る条件

問題文全文(内容文):

$\boxed{4}$

$k$を実数の定数となる。

$z$についての方程式

$z^3-5z^2+kz-5=0$の$3$つの解は

複素数平面上で斜辺$2$の直角三角形の頂点となる。

このとき、$k=\boxed{ト}$であり、

この直角三角形の面積は$\boxed{ナ}$である。

$2025$年早稲田大学人間科学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$を実数の定数となる。

$z$についての方程式

$z^3-5z^2+kz-5=0$の$3$つの解は

複素数平面上で斜辺$2$の直角三角形の頂点となる。

このとき、$k=\boxed{ト}$であり、

この直角三角形の面積は$\boxed{ナ}$である。

$2025$年早稲田大学人間科学部過去問題
投稿日:2025.07.08

<関連動画>

数検準1級1次過去問(2番 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣$x^3-7x^2-4x+1=0$
の3つの解をα、β、γとする。
$α^2+β^2+γ^2$の値を求めよ。

解と係数の関係
$ax^3+bx^2+cx+d=0$
$α+β+γ=- \frac{b}{a}$
$αβ+βγ+γα=\frac{c}{a}$
$αβγ=- \frac{d}{a}$
この動画を見る 

【高校数学】数Ⅲ-10 複素数の積の図表示②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①複素数$z$に対して,点$z$を原点$O$を中心として,
$\dfrac{5}{6}\pi$だけ回転した点を表す複素数$w_1$を求めよう.

②$z=-4-2i$とする.点$z$を原点$O$を中心として
$\dfrac{\pi}{3}$だけ回転した点を表す複素数$w_2$を求めよう.

③$z=-3-i$とする.点$z$を原点$O$を中心として,
$-\dfrac{\pi}{4}$だけ回転し,原点からの距離を$\sqrt2$倍に
拡大した点を表す複素数$w_3$を求めよう.
この動画を見る 

【高校数学】数Ⅲ-18 複素数と三角形①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
複素数$\sqrt3+i,4i$が表す点をそれぞれ$P,Q$とする.
このとき,半直線$PQ$が実軸の正の向きよなす角を求めよ.
この動画を見る 

【数Ⅱ】複素数と方程式:2次方程式の解の判別(最高次数の係数が文字の場合)kは定数とする。次の方程式の解の種類を判別せよ。(k²-1)x²+2(k-1)+2=0

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$(k²-1)x²+2(k-1)+2=0$の解の種類を判別せよ。
この動画を見る 

慶応義塾大 3次方程式(補)共役の複素数は解となることを示せ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$実数
$x^3+ax^2-3x+10=0$の1つの解は$x=2-i$
$a$の値と実数解を求めよ。

※$n$次方程式$(n \geqq 4)$で$m+ni(n \neq 0)$が解なら$m-ni$も解であることを示せ

出典:2009年慶應義塾 過去問
この動画を見る 
PAGE TOP