合同式の基本 - 質問解決D.B.(データベース)

合同式の基本

問題文全文(内容文):
m,nを自然数とする.
$ n^2-m!=2001 $を満たす(m,n)をすべて求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$ n^2-m!=2001 $を満たす(m,n)をすべて求めよ.
投稿日:2022.04.22

<関連動画>

早稲田大 ガウス記号

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$は実数であり,$n$は自然数である.
①$\left[\dfrac{1}{2}x\right]-\left[\dfrac{1}{2}[x]\right]=0$示せ.
②$\left[\dfrac{1}{n}x\right]-\left[\dfrac{1}{n}[x]\right]=0$を求めよ.

2009早稲田大過去問
この動画を見る 

英国数学オリンピック 高校入試レベルの問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$

英国数学オリンピック過去問
この動画を見る 

整数問題 早稲田実業

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$c^2+4a^2+b^2 =65$を満たす正の整数a,b,cの組を求めよ。

早稲田実業学校
この動画を見る 

整数問題!地味に難しいです【大阪医科薬科大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$x,y$に対する方程式$3^x-2^y=1$を考える。

(1)y≧2に対し解$x$が存在するならば,$x$は偶数であることを示せ。

(2)上の方程式を満たす自然数$x,y$の組をすべて求めよ。

大阪医科歯科大過去問
この動画を見る 

広島大 素数・対数不等式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題

(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3  PとP+2がともに素数のときP+1は6の倍数であることを示せ。


不等式$log_2(x-1) \leqq log_4(2x-1)$
この動画を見る 
PAGE TOP