4次方程式 - 質問解決D.B.(データベース)

4次方程式

問題文全文(内容文):
$4$つの解を求めよ.
$(x-7.5)^4+(x-8.5)^4=1$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4$つの解を求めよ.
$(x-7.5)^4+(x-8.5)^4=1$
投稿日:2021.01.17

<関連動画>

二乗して➖2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^{2}=-2のときx=?$
この動画を見る 

岡山県立大 複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
岡山県立大学過去問題
$ω=\frac{-1+\sqrt3i}{2}$  n自然数
(1)$ω^{2005}$の値
(2)$ω^{n+1}+(ω+1)^{2n-1}=0$示せ
(3)整式$x^{n+1}+(x+1)^{2n-1}$は、$x^2+x+1$で割り切れる。示せ。
この動画を見る 

3次不等式を解け

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: 数学を数楽に
この動画を見る 

福田の数学〜九州大学2022年文系第3問〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$k$を実数とし、整式f(x)を
$f(x)=x^4+6x^3-kx^2+2kx-64$
で定める。方程式$f(x)=0$が虚数解をもつとき、以下の問いに答えよ。
(1)f(x)は$x-2$で割り切れることを示せ。
(2)方程式$f(x)=0$は負の実数解をもつことを示せ。
(3)方程式$f(x)=0$の全ての実数解が整数であり、
すべての虚数解の実部と虚部が共に整数であるとする。
このような$k$を全て求めよ。

2022九州大学文系過去問
この動画を見る 

福田の数学〜中央大学2021年理工学部第3問〜剰余類による分類

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り

(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.

(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.

2021中央大理工学部過去問
この動画を見る 
PAGE TOP