問題文全文(内容文):
${\Large\boxed{1}}$ 次の領域を図示せよ。
(1)$y \gt \frac{1}{x}$
(2)$xy \gt 1$
(3)$\begin{eqnarray}
\left\{
\begin{array}{l}
y \gt 3x-5 \\
x^2+y^2 \lt 25
\end{array}
\right.
\end{eqnarray}$
(4)$x(x^2-y^2)(x^2+y^2-2)(x^2-y) \gt 0$
(5)$|x|+|y| \leqq 1$
${\Large\boxed{1}}$ 次の領域を図示せよ。
(1)$y \gt \frac{1}{x}$
(2)$xy \gt 1$
(3)$\begin{eqnarray}
\left\{
\begin{array}{l}
y \gt 3x-5 \\
x^2+y^2 \lt 25
\end{array}
\right.
\end{eqnarray}$
(4)$x(x^2-y^2)(x^2+y^2-2)(x^2-y) \gt 0$
(5)$|x|+|y| \leqq 1$
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の領域を図示せよ。
(1)$y \gt \frac{1}{x}$
(2)$xy \gt 1$
(3)$\begin{eqnarray}
\left\{
\begin{array}{l}
y \gt 3x-5 \\
x^2+y^2 \lt 25
\end{array}
\right.
\end{eqnarray}$
(4)$x(x^2-y^2)(x^2+y^2-2)(x^2-y) \gt 0$
(5)$|x|+|y| \leqq 1$
${\Large\boxed{1}}$ 次の領域を図示せよ。
(1)$y \gt \frac{1}{x}$
(2)$xy \gt 1$
(3)$\begin{eqnarray}
\left\{
\begin{array}{l}
y \gt 3x-5 \\
x^2+y^2 \lt 25
\end{array}
\right.
\end{eqnarray}$
(4)$x(x^2-y^2)(x^2+y^2-2)(x^2-y) \gt 0$
(5)$|x|+|y| \leqq 1$
投稿日:2018.08.28