福田の数学〜立教大学2024年理学部第4問〜3次方程式の実数解と整数解 - 質問解決D.B.(データベース)

福田の数学〜立教大学2024年理学部第4問〜3次方程式の実数解と整数解

問題文全文(内容文):
$m, a, b, c, d, e, f, r, s, t$を自然数とする。このとき(1)~(5)に答えよ。ただし、(2)(3)の事実は(4)(5)で用いてよい。
(1)2次方程式$2x^2+5x+m=0$の解が有理数となるような自然数$m$をすべて求めよ。ただし、$p$が素数であるとき$\sqrt{p}$が無理数であることを用いてよい。
(2)3次方程式$x^3+ax^2+bx+c=0$の実数解は負の数であることを証明せよ。ただし、方程式$x^3+ax^2+bx+c=0$が少なくとも1つ実数解をもつことは証明せずに用いてよい。
(3)3次方程式$x^3+dx^2+ex+f=0$が整数$n$を解にもつとする。このとき$n$は$f$の約数であることを示せ。
(4)3次方程式$x^3+rx^2+rx+3=0$が整数解を少なくとも1つもつような自然数$r$をすべて求めよ。
(5)3次方程式$x^3+sx^2+tx+6=0$が異なる3つの整数を解にもつような自然数の組$(s, t)$をすべて求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$m, a, b, c, d, e, f, r, s, t$を自然数とする。このとき(1)~(5)に答えよ。ただし、(2)(3)の事実は(4)(5)で用いてよい。
(1)2次方程式$2x^2+5x+m=0$の解が有理数となるような自然数$m$をすべて求めよ。ただし、$p$が素数であるとき$\sqrt{p}$が無理数であることを用いてよい。
(2)3次方程式$x^3+ax^2+bx+c=0$の実数解は負の数であることを証明せよ。ただし、方程式$x^3+ax^2+bx+c=0$が少なくとも1つ実数解をもつことは証明せずに用いてよい。
(3)3次方程式$x^3+dx^2+ex+f=0$が整数$n$を解にもつとする。このとき$n$は$f$の約数であることを示せ。
(4)3次方程式$x^3+rx^2+rx+3=0$が整数解を少なくとも1つもつような自然数$r$をすべて求めよ。
(5)3次方程式$x^3+sx^2+tx+6=0$が異なる3つの整数を解にもつような自然数の組$(s, t)$をすべて求めよ。
投稿日:2024.07.11

<関連動画>

【複素数の基礎はこれだけ!】複素数の最低限の知識をまとめました!〔高校数学 数学〕

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
複素数についてまとめました。
この動画を見る 

2021久留米大(医)三次方程式と複素平面

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.

2021久留米(医)
この動画を見る 

千葉大 複素数 極形式 7乗根

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4+x^3+x^2+x+1=0$を満たすとき,
$(x^{2019}+x^{2018}+x^{2017}+1)^{5n}+$
$(x^{2019}+x^{2018}+x^{2016}+1)^{5n-5}$の値を求めよ.
この動画を見る 

#58数検1級1次「ぱっと見はちょろそうだけど・・・」 #方程式

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
方程式
$x^6-14x^4+17x^2-4=0$を解け。

出典:数検1級1次
この動画を見る 
PAGE TOP