鳴門教育大 2直線のなす角 - 質問解決D.B.(データベース)

鳴門教育大 2直線のなす角

問題文全文(内容文):
$y=x^3$上の異なる2点$(a,a^3),(b,b^3)$における接線のなす角が$60^{ \circ }$である。
$a$と$b$の関係を式で表せ

出典:鳴門教育大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3$上の異なる2点$(a,a^3),(b,b^3)$における接線のなす角が$60^{ \circ }$である。
$a$と$b$の関係を式で表せ

出典:鳴門教育大学 過去問
投稿日:2019.12.11

<関連動画>

π<3 .3 示せ(類)浜松医科大学2022

アイキャッチ画像
単元: #式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \pi<3.3$を示せ.

2022浜松医科大過去問
この動画を見る 

【高校数学】微分1.5~例題・微分係数と極限~ 6-2【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $f(x)=x^2$の$x=2$における微分係数を求めよ。

(2) $\displaystyle \lim_{ x \to 3 }$$(x^2-2x+4)$

(3) $\displaystyle \lim_{ x \to -3 }$$\frac{x^2-9}{x+3}$

(4) $\displaystyle \lim_{ x \to 3 }$$\frac{2x}{x-5}$

(5) $\displaystyle \lim_{ x \to 0 }$$\frac{1}{x}$$(\frac{1}{x-1}+1)$
この動画を見る 

#千葉大学2020#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x\cos x$ $dx$

出典:2024年千葉大学
この動画を見る 

東大 積分 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq a \leqq \beta$ 実数

$f(x)=x^2-(a+ \beta)z+a \beta$

$\displaystyle \int_{-1}^{ 1 }f(x)dx=1$が成立している。

定積分$s=\displaystyle \int_{0}^{ a }f(x)ax$を$a$の式で表し、$S$の最大値を求めよ。


出典:2008年東京大学 過去問
この動画を見る 

福田の数学〜東京大学2023年理系第3問〜円と放物線と切り取られる弦の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、座標平面上の点(0,a)を中心とする半径1の円の周をCとする。
(1)Cが不等式$y>x^2$の表す領域に含まれるようなaの範囲を求めよ。
(2)aは(1)で求めた範囲にあるとする。Cのうちx≧0かつy<aを満たす部分をSとする。S上の点Pに対し、点PでのCの接線が放物線$y=x^2$によって切り取られてできる線分の長さを$L_P$とする。$L_Q$=$L_R$となるS上の相異なる2点Q, Rが存在するようなaの範囲を求めよ。

2023東京大学理系過去問
この動画を見る 
PAGE TOP