慶應義塾大(商)数列の和 - 質問解決D.B.(データベース)

慶應義塾大(商)数列の和

問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k・2^{k+2}$

出典:2000年慶應義塾大学商学部 過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k・2^{k+2}$

出典:2000年慶應義塾大学商学部 過去問
投稿日:2019.11.09

<関連動画>

【高校数学】等差数列の一般項~理解すると忘れない~ 3-2【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等差数列の一般項の説明動画です
この動画を見る 

福田の1.5倍速演習〜合格する重要問題076〜東京大学2018年度理系第2問〜数列の項の大小とユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
第2問
数列$a_1$, $a_2$, $\cdots$を
$a_n$=$\displaystyle\frac{{}_{2n+1}C_n}{n!}$ ($n$=1,2,...)
で定める。
(1)n≧2とする。$\frac{a_n}{a_{n-1}}$を既約分数$\frac{q_n}{p_n}$として表したときの分母$p_n$≧1と分子$q_n$を求めよ。
(2)$a_n$が整数となるn≧1をすべて求めよ。

2018東京大学理系過去問
この動画を見る 

大阪大 等比数列 訂正

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
訂正
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?



出典:大阪大学 過去問
この動画を見る 

福田の一夜漬け数学〜数列・群数列(3)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{array}{|c|c|c|c|c}
\hline 1 & 2 & 5 & 10 & \\
\hline 4 & 3 &6 & 11 & \\
\hline 9 & 8 & 7 & 12 & \\
\hline 16 & 15 & 14 & 13 & \\
\hline \\
\end{array}

上図のように自然数を配置していく。
$m$行目、$n$列目にある数を$a(m,n)$と
表すことにする。
例えば、$a(3,2)=8$ である。
次の問いに答えよ。

(1)$a(1,n)$
(2)$a(m,m)$
(3)$a(m,n)$
(4)150は何行目の何列目に出てくるか。
この動画を見る 

宇都宮大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n}=-2S_{n}S_{n-1}$
$(n=2,3…)$

(1)
$a_{2},a_{3}$を求めよ

(2)
$0 \lt S_{n} \leqq 1$を示せ

(3)
$a_{n}$を求めよ

出典:2008年宇都宮大学 過去問
この動画を見る 
PAGE TOP