問題文全文(内容文):
$f(x)=x^4-x^2+1$
①$x^6$を$f(x)$で割った余りを求めよ.
②$x^{2021}$を$f(x)$で割った余りを求めよ.
③$(x^2-1)^{3k}-1$は$f(x)$で割り切れることを示せ.$k$は自然数である.
2021早稲田(理)
$f(x)=x^4-x^2+1$
①$x^6$を$f(x)$で割った余りを求めよ.
②$x^{2021}$を$f(x)$で割った余りを求めよ.
③$(x^2-1)^{3k}-1$は$f(x)$で割り切れることを示せ.$k$は自然数である.
2021早稲田(理)
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-x^2+1$
①$x^6$を$f(x)$で割った余りを求めよ.
②$x^{2021}$を$f(x)$で割った余りを求めよ.
③$(x^2-1)^{3k}-1$は$f(x)$で割り切れることを示せ.$k$は自然数である.
2021早稲田(理)
$f(x)=x^4-x^2+1$
①$x^6$を$f(x)$で割った余りを求めよ.
②$x^{2021}$を$f(x)$で割った余りを求めよ.
③$(x^2-1)^{3k}-1$は$f(x)$で割り切れることを示せ.$k$は自然数である.
2021早稲田(理)
投稿日:2021.02.20