問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが\sqrt3+1である正八面体の頂点を右図(※動画参照)\\
のようにP_1,P_2,P_3,P_4,P_5,P_6とする。i=1,2,\ldots,6に対して\\
P_i以外の5点を頂点とする四角錐のすべての面に\\
内接する球(内部含む)をB_iとする。B_1の体積をXとし、B_1と\\
B_2の共通部分の体積をYとし、B_1,B_2,B_3の共通部分の体積をZ\\
とする。さらにB_1,B_2,\ldots,B_nを合わせて得られる立体の体積を\\
V_n\ \ (n=2,3,\ldots,6)とする。以下の問いに答えよ。\\
(1)V_n=aX+bY+cZとなる整数a,b,cをn=2,3,6の場合\\
について求めよ。\\
(2)Xの値を求めよ。\\
(3)V_2の値を求めよ。\\
\end{eqnarray}
2022早稲田大学理工学部過去問
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが\sqrt3+1である正八面体の頂点を右図(※動画参照)\\
のようにP_1,P_2,P_3,P_4,P_5,P_6とする。i=1,2,\ldots,6に対して\\
P_i以外の5点を頂点とする四角錐のすべての面に\\
内接する球(内部含む)をB_iとする。B_1の体積をXとし、B_1と\\
B_2の共通部分の体積をYとし、B_1,B_2,B_3の共通部分の体積をZ\\
とする。さらにB_1,B_2,\ldots,B_nを合わせて得られる立体の体積を\\
V_n\ \ (n=2,3,\ldots,6)とする。以下の問いに答えよ。\\
(1)V_n=aX+bY+cZとなる整数a,b,cをn=2,3,6の場合\\
について求めよ。\\
(2)Xの値を求めよ。\\
(3)V_2の値を求めよ。\\
\end{eqnarray}
2022早稲田大学理工学部過去問
単元:
#数A#大学入試過去問(数学)#図形の性質#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが\sqrt3+1である正八面体の頂点を右図(※動画参照)\\
のようにP_1,P_2,P_3,P_4,P_5,P_6とする。i=1,2,\ldots,6に対して\\
P_i以外の5点を頂点とする四角錐のすべての面に\\
内接する球(内部含む)をB_iとする。B_1の体積をXとし、B_1と\\
B_2の共通部分の体積をYとし、B_1,B_2,B_3の共通部分の体積をZ\\
とする。さらにB_1,B_2,\ldots,B_nを合わせて得られる立体の体積を\\
V_n\ \ (n=2,3,\ldots,6)とする。以下の問いに答えよ。\\
(1)V_n=aX+bY+cZとなる整数a,b,cをn=2,3,6の場合\\
について求めよ。\\
(2)Xの値を求めよ。\\
(3)V_2の値を求めよ。\\
\end{eqnarray}
2022早稲田大学理工学部過去問
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが\sqrt3+1である正八面体の頂点を右図(※動画参照)\\
のようにP_1,P_2,P_3,P_4,P_5,P_6とする。i=1,2,\ldots,6に対して\\
P_i以外の5点を頂点とする四角錐のすべての面に\\
内接する球(内部含む)をB_iとする。B_1の体積をXとし、B_1と\\
B_2の共通部分の体積をYとし、B_1,B_2,B_3の共通部分の体積をZ\\
とする。さらにB_1,B_2,\ldots,B_nを合わせて得られる立体の体積を\\
V_n\ \ (n=2,3,\ldots,6)とする。以下の問いに答えよ。\\
(1)V_n=aX+bY+cZとなる整数a,b,cをn=2,3,6の場合\\
について求めよ。\\
(2)Xの値を求めよ。\\
(3)V_2の値を求めよ。\\
\end{eqnarray}
2022早稲田大学理工学部過去問
投稿日:2022.07.28