【数Ⅱ】【式と証明】恒等式2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【式と証明】恒等式2 ※問題文は概要欄

問題文全文(内容文):
次の等式が x,yについての恒等式となるように、定数a,b,cの値を定めよ。
(1) x2+y2=a(x+y)2+b(xy)2
(2) xy=a(x+y)2+b(xy)2
(3) x2+axy+bx2y+2=(x1)(x+2y+c)
チャプター:

0:00 オープニング
0:06 問題文
0:16 問題(1)解説
1:43 問題(2)解説
3:03 問題(3)解説

単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式が x,yについての恒等式となるように、定数a,b,cの値を定めよ。
(1) x2+y2=a(x+y)2+b(xy)2
(2) xy=a(x+y)2+b(xy)2
(3) x2+axy+bx2y+2=(x1)(x+2y+c)
投稿日:2024.12.14

<関連動画>

福田の数学〜東北大学2023年理系第4問〜1の5乗根

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 実数a=512に対して、整式f(x)=x2-ax+1を考える。
(1)整式x4+x3+x2+x+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものをαとする。αを極形式で表せ。ただし、r5=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数αに対して、α2023+α2023の値を求めよ。

2023東北大学理系過去問
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
1 a+b+c+d4abcd4 を既知として、a+b+c3abc3 を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。

2 1を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数a1,a2,,anに対して
a1+a2++anna1a2ann
この動画を見る 

早稲田の恒等式!この形は〇〇したくなりますよね【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の整数m,定数関数でない整式P(x)である.

0xP(t)mdt=P(x3)P(0)

P(x)を求めよ.

早稲田大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題082〜北海道大学2018年度理系第5問〜不等式の証明と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
5 2つの関数
f(x)=cosx, g(x)=π22x2π2
がある。
(1)0≦x≦π2のとき、不等式2πxsinxが成り立つことを示せ。
(2)0≦x≦π2のとき、不等式g(x)≦f(x)が成り立つことを示せ。
(3)0≦x≦π2の範囲において、2つの曲線y=f(x), y=g(x)およびy軸が囲む部分の面積を求めよ。

2018北海道大学理系過去問
この動画を見る 

横浜市立(医)2n次方程式の実数解の個数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'82横浜市立大学過去問題
n2自然数
x2n2n+1xn+1n+2+xn1n1=0
実数解の個数
この動画を見る 
PAGE TOP preload imagepreload image