【数Ⅱ】【式と証明】恒等式2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【式と証明】恒等式2 ※問題文は概要欄

問題文全文(内容文):
次の等式が $x,y$についての恒等式となるように、定数$a,b,c$の値を定めよ。
(1) $x^2+y^2=a(x+y)^2+b(x-y)^2 $
(2) $xy=a(x+y)^2+b(x-y)^2$
(3) $x^2+axy+bx-2y+2=(x-1)(x+2y+c)$
チャプター:

0:00 オープニング
0:06 問題文
0:16 問題(1)解説
1:43 問題(2)解説
3:03 問題(3)解説

単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式が $x,y$についての恒等式となるように、定数$a,b,c$の値を定めよ。
(1) $x^2+y^2=a(x+y)^2+b(x-y)^2 $
(2) $xy=a(x+y)^2+b(x-y)^2$
(3) $x^2+axy+bx-2y+2=(x-1)(x+2y+c)$
投稿日:2024.12.14

<関連動画>

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)実数x,yについて、$「|x-y| \leqq x+y」$であることの必要十分条件は
「$x \geqq 0$かつ$y \geqq 0$ 」であることを示せ。
(2)次の不等式で定まるxy平面上の領域を図示せよ。
$|1+y-2x^2-y^2| \leqq 1-y-y^2$

2022一橋大学文系過去問
この動画を見る 

福田のわかった数学〜高校2年生065〜三角関数(4)三角不等式の基礎

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(4) 三角不等式の基礎
(1)$\sin\theta \gt -\frac{1}{2}$ (2)$\cos\theta \leqq \frac{\sqrt3}{2}$ (3)$\tan\theta \gt -1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
この動画を見る 

滋賀県立大 不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
不等式
$ax^2+y^2+az^2-xy-yz-xz \geqq 0$が任意の実数$x,y,z$でつねに成り立つ$a$の範囲を求めよ

出典:2007年滋賀県立大学 過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$< 1を満たす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部になる2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)$f(\theta)$=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式$f(\theta)$=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも一つ存在することを示せ。
(2)Dの座標をa,θを用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも一つ存在することを示せ。また、このようなθはただ一つであることを示せ。

2023北海道大学理系過去問
この動画を見る 

【高校数学】 数Ⅱ-11 分数式の計算④

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{1}{(a-b)(b-c)}+\displaystyle \frac{2}{(b-c)(c-a)}+\displaystyle \frac{3}{(c-a)(a-b)}$

②$\displaystyle \frac{1}{(x-y)(x-z)}+\displaystyle \frac{1}{(y-z)(y-x)}-\displaystyle \frac{1}{(z-x)(z-y)}$
この動画を見る 
PAGE TOP